概统考前瞄一眼(上)

概统复习

理论依据
实际应用
理论分布
统计分析
概率论
数理统计
总体
样本

一、事件与概率

事件与运算

  • 随机试验—— E E E为一个试验,若满足
    • 相同条件下可重复
    • 试验结果具有多样性;试验前所有可能结果已知
    • 试验前不确定何种结果发生
    • 称为随机试验
  • 样本空间—— E E E为随机试验, E E E的所有可能的基本结果而成集合,称为 E E E的样本空间 Ω \Omega Ω
  • 随机事件—— E E E为随机试验, Ω \Omega Ω E E E的样本空间, Ω \Omega Ω的子集称为随机事件
  • 和、积、差、补运算,包含、相等、互斥、对立关系
    • A = ( A − B ) + A B A = (A-B)+AB A=(AB)+AB

概率、基本公式

  • 概率—— E − 随 机 试 验 , Ω − 样 本 空 间 , ∀ A ⊂ Ω E-随机试验,\Omega-样本空间,\forall A\subset\Omega EΩAΩ,定义 P ( A ) P(A) P(A),若满足

    • ∀ A ⊂ Ω , 有 P ( A ) ≥ 0 \forall A\subset\Omega,有P(A)\geq 0 AΩP(A)0 (非负性)
    • p ( Ω ) = 1 p(\Omega) = 1 p(Ω)=1 (归一性)
    • A 1 , A 2 , ⋯   , A n , ⋯ A_1,A_2,\cdots,A_n,\cdots A1,A2,,An,两两互斥,有 P ( A 1 + A 2 + ⋯   ) = P ( A 1 ) + P ( A 2 ) + ⋯ P(A_1+A_2+\cdots)=P(A_1)+P(A_2)+\cdots P(A1+A2+)=P(A1)+P(A2)+ (可列可加性)
    • P ( A ) P(A) P(A)为事件 A A A概率
  • 性质

    • P ( ∅ ) = 0 P(\varnothing) = 0 P()=0
    • 有限可加性
    • A + A ‾ = Ω , 且 A ⋅ A ‾ = ∅ A+\overline{A}=\Omega,且A·\overline{A}=\varnothing A+A=Ω,AA=
  • 基本公式

    • 减法公式 A = ( A − B ) + A B ⇒ P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) A = (A-B)+AB\Rightarrow P(A-B)=P(A\overline{B})=P(A)-P(AB) A=(AB)+ABP(AB)=P(AB)=P(A)P(AB)
    • 加法公式: P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
    • 条件概率 P ( A ∣ B ) = P ( A B ) / P ( B ) P(A|B)=P(AB)/P(B) P(AB)=P(AB)/P(B)
    • 乘法公式: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B),则称 A , B A,B AB独立
    • 全概率公式 P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^n P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi),其中 B 1 , ⋯   , B n 互 斥 且 和 为 样 本 空 间 B_1,\cdots,B_n互斥且和为样本空间 B1,,Bn
    • 贝叶斯公式 P ( B i ∣ A ) = P ( A B i ) / P ( A ) = P ( B i ) P ( A ∣ B i ) / ∑ j P ( B j ) P ( A ∣ B j ) P(B_i|A)=P(AB_i)/P(A)=P(B_i)P(A|B_i)/\sum_jP(B_j)P(A|B_j) P(BiA)=P(ABi)/P(A)=P(Bi)P(ABi)/jP(Bj)P(ABj)

Note:

  • 两两独立 ≠ \neq =相互独立,相互独立才满足 P ( A 1 ⋯ A n ) = P ( A 1 ) ⋯ P ( A n ) P(A_1\cdots A_n)=P(A_1)\cdots P(A_n) P(A1An)=P(A1)P(An)
  • 若一列事件相互独立,则其中一部分改为对立事件,仍相互独立
    • ⇒ \Rightarrow ∀ i 1 , ⋯   , i m \forall i_1,\cdots,i_m i1,,im A 1 ‾ 与 A 2 ⋯ A m \overline{A_1}与A_2\cdots A_m A1A2Am相互独立
    • ⇐ \Leftarrow ,取m个求和
  • 为便于理解贝叶斯公式,浅举一个例子:发病率=0.5%,生病->阳性=95%,不生病->阴性=95%,已知为阳性,问他生病的概率是多少
    • P ( B i ∣ A ) = 0.5 % × 95 % 0.5 % × 95 % + 99.5 % × 5 % = 8.7 % P(B_i|A)=\frac{0.5\%\times 95\%}{0.5\%\times95\%+99.5\%\times5\%}=8.7\% P(BiA)=0.5%×95%+99.5%×5%0.5%×95%=8.7%

二、随机变量及其概率分布

  • 随机变量—— Ω 为 随 机 试 验 E 的 样 本 空 间 , I f ∀ ω ∈ Ω \Omega为随机试验E的样本空间,If\forall \omega\in\Omega ΩEIfωΩ
    • ∃ 1 X ( ω ) ( 实 数 ) 与 ω 对 应 \exist^1 X(\omega)(实数)与\omega对应 1X(ω)()ω,称 X = X ( ω ) X=X(\omega) X=X(ω)随机变量
  • Note:随机变量 X X X的范围本质上即随机事件

一维随机变量

  • 分布函数—— X X X为随机变量( r . v . − r a n d o m   v a r i a b l e r.v. - random \ variable r.v.random variable)
    • P { X ≤ x } ≜ F ( x ) , − ∞ < x < + ∞ P\{X\leq x\}\triangleq F(x),-\infty<x<+\infty P{Xx}F(x),<x<+
  • 性质:
    • 0 ≤ F ( x ) ≤ 1 0\leq F(x)\leq 1 0F(x)1
    • F ( x ) F(x) F(x)单调不减
    • F ( x ) F(x) F(x)右连续,即 lim ⁡ x → x 0 + F ( x ) = F ( x 0 ) \lim_{x\rightarrow x_0^+}F(x)=F(x_0) limxx0+F(x)=F(x0)
    • F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F(-\infty)=0,F(+\infty)=1 F()=0,F(+)=1
  • Notes
    • P { X < x } = F ( x − 0 ) P\{X<x\}=F(x-0) P{X<x}=F(x0)
    • P { X = x } = P { X ≤ x } − P { X < x } = F ( x ) − F ( x − 0 ) P\{X=x\}=P\{X\leq x\}-P\{X<x\}=F(x)-F(x-0) P{X=x}=P{Xx}P{X<x}=F(x)F(x0)
    • P { a < X ≤ b } = P { X ≤ b } − P { X ≤ a } = F ( b ) − F ( a ) P\{a<X\leq b\}=P\{X\leq b\}-P\{X\leq a\}=F(b)-F(a) P{a<Xb}=P{Xb}P{Xa}=F(b)F(a)

离散型随机变量即分布律

  • 分布律——设 X X X为离散型随机变量,可能取值为 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn,对应概率为 p 1 , ⋯   , p n p_1,\cdots,p_n p1,,pn
    • 则列表或 P { X = x i } = p i ( i = 1 , ⋯   , n , ⋯   ) P\{X=x_i\}=p_i(i=1,\cdots,n,\cdots) P{X=xi}=pi(i=1,,n,)称为分布律
二项分布(☆)

n重伯努利试验,试验只有两个可能结果 A 和 A ‾ A和\overline{A} AA X X X n n n次试验, A A A出现的次数

  • 二项分布:设 X X X为离散型随机变量,若 X X X的分布律为 P ( X = k ) = C n k p k ( 1 − p ) n − k ( 0 < p < 1 , k = 0 , 1 , ⋯   , n ) P(X=k)=C_n^kp^k(1-p)^{n-k}(0<p<1,k=0,1,\cdots,n) P(X=k)=Cnkpk(1p)nk(0<p<1,k=0,1,,n),称 X X X服从二项分布,记为 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)
泊松分布(☆)
  • 泊松分布:设 X X X为离散型随机变量,若 x x x的分布律为 P ( X = k ) = λ k k ! e − λ ( λ > 0 , k = 1 , 2 , ⋯   ) P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}(\lambda > 0,k=1,2,\cdots) P(X=k)=k!λkeλ(λ>0,k=1,2,),称 X X X服从泊松分布,记为 X ∼ P ( λ ) X\sim P(\lambda) XP(λ)
超几何分布
  • 超几何分布:设 X X X为离散型随机变量,产品共 N N N个,废品 M M M个,取 n n n个恰好废品个数为 X X X,若 X X X的分布律为 P ( X = m ) = C M m C N − M n − m C N n P(X=m)=\frac{C_M^mC_{N-M}^{n-m}}{C_N^n} P(X=m)=CNnCMmCNMnm,称 X X X服从超几何分布
负二项分布

X X X表示直至 A A A出现r次停止,试验结果仅两种 A A A A ‾ \overline{A} A

  • 负二项分布:设 X X X为离散型随机变量,若 X X X的分布律为 P ( X = k ) = C r + k − 1 k p r ( 1 − p ) k ( k = 0 , 1 , 2 , ⋯   ) P(X=k)=C_{r+k-1}^kp^r(1-p)^k(k=0,1,2,\cdots) P(X=k)=Cr+k1kpr(1p)k(k=0,1,2,),称 X X X服从负二项分布,记为 X ∼ N B ( r , p ) X\sim NB(r,p) XNB(r,p)
几何分布

X X X表示首次出现 A A A试验的次数,试验结果仅两种 A A A A ‾ \overline{A} A

  • 几何分布:设 X X X为离散型随机变量,若 X X X的分布律为 P ( X = k ) = p ( 1 − p ) k − 1 ( k = 1 , 2 , ⋯   ) P(X=k)=p(1-p)^{k-1}(k=1,2,\cdots) P(X=k)=p(1p)k1(k=1,2,),称 X X X服从几何分布,记为 X ∼ G ( p ) X\sim G(p) XG(p)
  • 显然是 r = 1 r=1 r=1时的负二项分布

Note:

  • 泊松分布可作为二项分布的极限得到,其中 n n n很大, p p p很小,而 n p = λ np=\lambda np=λ不太大
    • P ( X = k ) = C n k p k ( 1 − p ) n − k = n ( n − 1 ) ⋯ ( n − k + 1 ) k ! n k p k n k ( 1 − 1 n n p ) n n − k n → 1 k ! λ k e − λ P(X=k)=C_n^kp^k(1-p)^{n-k}=\frac{n(n-1)\cdots(n-k+1)}{k!}\frac{n^kp^k}{n^k}(1-\frac{1}{n}np)^{n\frac{n-k}{n}}\rightarrow \frac{1}{k!}\lambda^ke^{-\lambda} P(X=k)=Cnkpk(1p)nk=k!n(n1)(nk+1)nknkpk(1n1np)nnnkk!1λkeλ

连续性随机变量及密度函数

  • 密度函数—— Ω \Omega Ω为随机试验 E E E的样本空间, X X X Ω \Omega Ω上的随机变量
    • F ( x ) = P { X ≤ x } F(x)=P\{X\leq x\} F(x)=P{Xx},若 ∃ f ( x ) ≥ 0 , 使 ∫ − ∞ x f ( t ) d t = F ( x ) \exist f(x)\geq 0,使\int_{-\infty}^xf(t)dt=F(x) f(x)0,使xf(t)dt=F(x) f ( x ) f(x) f(x)称为 X X X密度函数
均匀分布(☆)
  • 均匀分布:设 X X X为连续型随机变量,若 X X X密度函数 f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\frac{1}{b-a}, & a<x<b \\ 0, &其他\end{cases} f(x)={ba1,0,a<x<b,称 X X X服从 ( a , b ) (a,b) (a,b)均匀分布,记为 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)
  • 分布函数 F ( x ) = { 0 , x < a x − a b − a , a < x < b 1 , x ≥ b F(x)=\begin{cases}0,&x <a \\ \frac{x-a}{b-a},& a<x<b \\ 1, &x\geq b\end{cases} F(x)=0,baxa,1,x<aa<x<bxb
指数分布(☆)
  • 指数分布:设 X X X为连续型随机变量,若 X X X密度函数 f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x)=\begin{cases}\lambda e^{-\lambda x}, &x > 0 \\ 0, & x \leq 0 \end{cases} f(x)={λeλx,0,x>0x0,称 X X X服从参数为 λ \lambda λ指数分布,记为 X ∼ E ( λ ) X\sim E(\lambda) XE(λ)
  • 分布函数 F ( x ) = { 0 , x < 0 1 − e − λ x , x ≥ 0 F(x)=\begin{cases}0, &x <0 \\1-e^{-\lambda x}, &x\geq 0\end{cases} F(x)={0,1eλx,x<0x0
正态分布(☆☆)
  • 正态分布:设 X X X为连续型随机变量,若 X X X密度函数 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2,称 X X X服从参数为 μ , σ 2 \mu,\sigma^2 μ,σ2正态分布:记为== X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)==

  • 标准正态分布 μ = 0 , σ = 1 , X ∼ N ( 0 , 1 ) \mu = 0, \sigma = 1, X\sim N(0,1) μ=0,σ=1,XN(0,1),此时密度函数 f ( x ) = 1 2 π e − x 2 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} f(x)=2π 1e2x2,分布函数为 Φ ( x ) \Phi(x) Φ(x),查表

    • Φ ( 0 ) = 1 2 \Phi(0) = \frac{1}{2} Φ(0)=21
    • Φ ( − a ) = 1 − Φ ( a ) \Phi(-a) = 1 - \Phi(a) Φ(a)=1Φ(a)

Note:

  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 F ( x ) = Φ ( x − μ σ ) F(x)=\Phi(\frac{x-\mu}{\sigma}) F(x)=Φ(σxμ)
  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 P { a < x ≤ b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) P\{a<x\leq b\}=F(b)-F(a)=\Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma}) P{a<xb}=F(b)F(a)=Φ(σbμ)Φ(σaμ)
  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),则 X − μ σ ∼ N ( 0 , 1 ) \frac{X-\mu}{\sigma}\sim N(0, 1) σXμN(0,1)

多维随机变量

  • 2 − d i m   r . v . 2-dim \ r.v. 2dim r.v.—— E E E为随机试验, Ω \Omega Ω为样本空间
    • ∀ ω ∈ Ω \forall\omega\in\Omega ωΩ ∃ 1 \exist^1 1一对实数 ( X , Y ) (X,Y) (X,Y) ω \omega ω对应,称 ( X , Y ) (X,Y) (X,Y) 2 − d i m   r . v . 2-dim\ r.v. 2dim r.v.
  • 分布函数—— ( X , Y ) 为 2 − d i m   r . v . (X,Y)为2-dim\ r. v. (X,Y)2dim r.v.
    • ∀ x , y ∈ R , P { X ≤ x , Y ≤ y } = ≜ F ( x , y ) \forall x,y\in R, P\{X\leq x,Y\leq y\}=\triangleq F(x,y) x,yR,P{Xx,Yy}=F(x,y),为 ( X , Y ) (X,Y) (X,Y)联合分布函数
    • P { X ≤ x } ≜ F X ( x ) P\{X\leq x\}\triangleq F_X(x) P{Xx}FX(x)—— X X X边际分布函数
    • P { Y ≤ y } ≜ F Y ( y ) P\{Y\leq y\}\triangleq F_Y(y) P{Yy}FY(y)—— Y Y Y边际分布函数

离散型随机变量

  • 联合分布率边缘分布律同理于一维随机变量

连续型随机变量

  • ( X , Y ) 为 2 − d i m   r . v . (X,Y)为2-dim \ r.v. (X,Y)2dim r.v.,联合分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{Xx,Yy}
    • i f   ∃ f ( x , y ) ≥ 0 , 使 ∫ − ∞ x d x ∫ − ∞ y f ( x , y ) d y = F ( x , y ) if\ \exist f(x,y)\geq 0,使\int_{-\infty}^xdx\int_{-\infty}^yf(x,y)dy=F(x,y) if f(x,y)0,使xdxyf(x,y)dy=F(x,y),称 f ( x , y ) f(x,y) f(x,y)联合密度函数
    • ∫ − ∞ + ∞ f ( x , y ) d y ≜ = f X ( x ) \int_{-\infty}^{+\infty}f(x,y)dy\triangleq=f_X(x) +f(x,y)dy=fX(x),为 X X X边缘密度函数
    • ∫ − ∞ + ∞ f ( x , y ) d x ≜ = f Y ( y ) \int_{-\infty}^{+\infty}f(x,y)dx\triangleq=f_Y(y) +f(x,y)dx=fY(y),为 Y Y Y边缘密度函数
均匀分布
  • 均匀分布 D D D x o y xoy xoy平面内有限区域,其面积为 A A A,若 2 − d i m 2-dim 2dim连续型随机变量 ( X , Y ) (X,Y) (X,Y)的联合密度函数为 f ( x , y ) = { 1 A , ( x , y ) ∈ D 0 , ( x , y ) ∉ D f(x,y)=\begin{cases}\frac{1}{A}, &(x,y)\in D \\ 0, &(x,y)\notin D\end{cases} f(x,y)={A1,0,(x,y)D(x,y)/D,称 ( X , Y ) (X,Y) (X,Y) D D D上服从均匀分布,记为== ( X , Y ) ∼ U ( D ) (X,Y)\sim U(D) (X,Y)U(D)==
正态分布
  • 正态分布:设 ( X , Y ) (X,Y) (X,Y) 2 − d i m 2-dim 2dim连续型随机变量,若 ( X , Y ) (X,Y) (X,Y)的联合密度函数为 f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) { ( x − μ 1 ) 2 σ 1 2 − 2 ρ x − μ 1 σ 1 x − μ 2 σ 2 + ( x − μ 2 ) 2 σ 2 2 } f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\{\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{x-\mu_1}{\sigma_1}\frac{x-\mu_2}{\sigma_2}+\frac{(x-\mu_2)^2}{\sigma_2^2}\}} f(x,y)=2πσ1σ21ρ2 1e2(1ρ2)1{σ12(xμ1)22ρσ1xμ1σ2xμ2+σ22(xμ2)2},称 ( X , Y ) (X,Y) (X,Y)服从以 μ 1 , μ 2 , σ 1 2 , σ 2 2 ρ \mu_1,\mu_2,\sigma_1^2,\sigma_2^2\rho μ1,μ2,σ12,σ22ρ为参数的正态分布,记为== ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)==
  • ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ),则 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) XN(μ1,σ12)YN(μ2,σ22)

条件分布

  • 条件分布率 设 ( X , Y ) 为 2 − d i m 设(X,Y)为2-dim (X,Y)2dim离散型随机变量,联合分布率为

    • y 1 y_1 y1 y 2 y_2 y2 ⋯ \cdots y n y_n yn P i ⋅ P_{i·} Pi
      x 1 x_1 x1 P 11 P_{11} P11 P 12 P_{12} P12 ⋯ \cdots P 1 n P_{1n} P1n P 1 ⋅ P_{1·} P1
      x 2 x_2 x2 P 21 P_{21} P21 P 22 P_{22} P22 ⋯ \cdots P 2 n P_{2n} P2n P 2 ⋅ P_{2·} P2
      ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots
      x m x_m xm P m 1 P_{m1} Pm1 P m 2 P_{m2} Pm2 ⋯ \cdots P m n P_{mn} Pmn P m ⋅ P_{m·} Pm
      P ⋅ j P_{·j} Pj P ⋅ 1 P_{·1} P1 P ⋅ 2 P_{·2} P2 ⋯ \cdots P ⋅ n P_{·n} Pn 1 1 1
    • { X = x i } \{X=x_i\} {X=xi}的条件下, { Y = y j } \{Y=y_j\} {Y=yj}条件分布率 P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i ⋅ P\{Y=y_j|X=x_i\}=\frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}}=\frac{p_{ij}}{p_{i·}} P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj}=pipij

    • { Y = y j } \{Y=y_j\} {Y=yj}的条件下, { X = x i } \{X=x_i\} {X=xi}条件分布率 P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{p_{·j}} P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij

  • 条件密度函数 设 ( X , Y ) 为 2 − d i m 设(X,Y)为2-dim (X,Y)2dim连续型随机变量,其联合密度函数为 f ( x , y ) f(x,y) f(x,y),边缘函数为 f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y)

    • X = x X=x X=x的条件下, Y Y Y条件密度函数 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)} fYX(yx)=fX(x)f(x,y)
    • Y = y Y=y Y=y的条件下, X X X条件密度函数 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)

随机变量的独立性

  • 独立 ( X , Y ) (X,Y) (X,Y)为二维随机变量, I f   F ( x , y ) = F X ( x ) F Y ( y ) If\ F(x,y)=F_X(x)F_Y(y) If F(x,y)=FX(x)FY(y),称 X , Y X,Y X,Y独立
  • 等价条件
    • 离散型随机变量, P i j = P i ⋅ × P ⋅ j P_{ij}=P_{i·}\times P_{·j} Pij=Pi×Pj
    • 连续性随机变量, f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
  • 若连续型随机向量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的概率密度函数 f ( x 1 , ⋯   , x n ) f(x_1,\cdots,x_n) f(x1,,xn)可表为 n n n个函数 g 1 , ⋯   , g n g_1,\cdots,g_n g1,,gn之积,其中 g i g_i gi只依赖于 x i x_i xi,即
    • f ( x 1 , ⋯   , x n ) = g 1 ( x 1 ) ⋯ g n ( x n ) f(x_1,\cdots,x_n)=g_1(x_1)\cdots g_n(x_n) f(x1,,xn)=g1(x1)gn(xn),则 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn相互独立,且 X i X_i Xi的边缘密度函数 f i ( x i ) f_i(x_i) fi(xi) g i ( x i ) g_i(x_i) gi(xi)只差一个常数因子。

随机变量函数的概率分布

  • X ∼ B ( m , p ) , Y ∼ B ( n , p ) X\sim B(m,p),Y\sim B(n,p) XB(m,p)YB(n,p),且 X , Y X,Y X,Y独立,则 X + Y ∼ B ( m + n , p ) X+Y\sim B(m+n,p) X+YB(m+n,p)
  • X ∼ P ( λ ) , Y ∼ P ( l ) X\sim P(\lambda),Y\sim P(l) XP(λ)YP(l),且 X , Y X,Y X,Y独立,则 X + Y ∼ P ( λ + l ) X+Y\sim P(\lambda+l) X+YP(λ+l)
  • 作出 f ( x , y ) f(x,y) f(x,y)的密度函数的图像,并在所求函数的条件下,计算二重积分。
  • min ⁡ { X , Y } ⇔ > \min\{X,Y\}\Leftrightarrow > min{X,Y}>
  • $\max{X,Y}\Leftrightarrow \leq $
  • X X X有密度函数 f ( x ) f(x) f(x),设 Y = g ( x ) Y=g(x) Y=g(x),若 g ( x ) g(x) g(x)单调,则有反函数 X = h ( Y ) , X=h(Y), X=h(Y)那么 P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ≤ h ( y ) ) P(Y\leq y)=P(g(X)\leq y)=P(X\leq h(y)) P(Yy)=P(g(X)y)=P(Xh(y)),进而求导得, Y Y Y的密度函数 l ( y ) = f ( h ( y ) ) ∣ h ′ ( y ) l(y)=f(h(y))|h'(y) l(y)=f(h(y))h(y)。若不严格单调,则 l ( y ) = 1 2 y − 1 / 2 [ f ( y ) + f ( − y ) ] l(y)=\frac{1}{2}y^{-1/2}[f(\sqrt{y})+f(-\sqrt{y})] l(y)=21y1/2[f(y )+f(y )]
  • 扩展 l ( y 1 , ⋯   , y n ) = f ( h 1 ( y 1 , ⋯ y n ) , ⋯   , h n ( y 1 , ⋯   , y n ) ) ∣ J ( y 1 , ⋯   , y n ) ∣ l(y_1,\cdots,y_n)=f(h_1(y_1,\cdots y_n),\cdots,h_n(y_1,\cdots,y_n))|J(y_1,\cdots,y_n)| l(y1,,yn)=f(h1(y1,yn),,hn(y1,,yn))J(y1,,yn)
  • 随机变量和 Y = X 1 + X 2 Y=X_1+X_2 Y=X1+X2的密度函数: l ( y ) = ∫ − ∞ + ∞ f ( x , y − x ) d x l(y)=\int_{-\infty}^{+\infty}f(x,y-x)dx l(y)=+f(x,yx)dx
  • 随机变量商 Y = X 2 / X 1 , X 1 只 取 正 值 Y=X_2/X_1,X_1只取正值 Y=X2/X1,X1的密度函数: l ( y ) = ∫ 0 + ∞ x 1 f ( x 1 , x 1 y ) d x 1 l(y)=\int_0^{+\infty}x_1f(x_1,x_1y)dx_1 l(y)=0+x1f(x1,x1y)dx1
  • 统一方法,改写+积分。

三、随机变量的数字特征

数学期望

  • 数学期望不一定存在):
    • E X = ∑ i = 1 ∞ x i p i EX=\sum_{i=1}^\infty x_ip_i EX=i=1xipi
    • E X ≜ ∫ − ∞ + ∞ x f ( x ) d x EX\triangleq \int_{-\infty}^{+\infty}xf(x)dx EX+xf(x)dx
  • 常见的数学期望
    • X ∼ B ( n , p ) = > E X = n p X\sim B(n,p)=> EX=np XB(n,p)=>EX=np
    • X ∼ P ( λ ) = > E X = λ X\sim P(\lambda)=>EX=\lambda XP(λ)=>EX=λ
    • X ∼ U ( a , b ) = > E X = a + b 2 X\sim U(a,b)=>EX=\frac{a+b}{2} XU(a,b)=>EX=2a+b
    • X ∼ E ( λ ) = > E X = 1 λ X\sim E(\lambda)=>EX=\frac{1}{\lambda} XE(λ)=>EX=λ1
    • X ∼ N ( μ , σ 2 ) = > E X = μ X\sim N(\mu,\sigma^2)=>EX=\mu XN(μ,σ2)=>EX=μ
  • 随机变量函数的数学期望
    • E Y ≜ ∑ i = 1 ∞ ϕ ( x i ) p i EY\triangleq\sum_{i=1}^\infty \phi(x_i)p_i EYi=1ϕ(xi)pi
    • E Y ≜ ∫ − ∞ + ∞ ϕ ( x ) f ( x ) d x EY\triangleq\int_{-\infty}^{+\infty}\phi(x)f(x)dx EY+ϕ(x)f(x)dx
    • E Z ≜ ∑ i = 1 m ∑ j = 1 n ϕ ( x i , y j ) p i j EZ\triangleq\sum_{i=1}^m\sum_{j=1}^n\phi(x_i,y_j)p_{ij} EZi=1mj=1nϕ(xi,yj)pij
    • E Z ≜ ∫ − ∞ + ∞ d x ∫ − ∞ + ∞ ϕ ( x , y ) f ( x , y ) d y EZ\triangleq\int_{-\infty}^{+\infty}dx\int_{-\infty}^{+\infty}\phi(x,y)f(x,y)dy EZ+dx+ϕ(x,y)f(x,y)dy
  • 性质
    • E ( C ) = C E(C)=C E(C)=C
    • E ( k X ) = k E ( X ) E(kX)=kE(X) E(kX)=kE(X)
    • E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
    • X , Y X,Y X,Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
  • 条件期望
    • E ( Y ∣ x ) = ∫ − ∞ + ∞ y f ( y ∣ x ) d y E(Y|x)=\int_{-\infty}^{+\infty}yf(y|x)dy E(Yx)=+yf(yx)dy
    • 二维正态分布,在给定 X = x X=x X=x时, Y Y Y的条件分布为正态分布 N ( b + ρ σ 2 σ 1 − 1 ( x − a ) , σ 2 2 ( 1 − ρ 2 ) ) N(b+\rho\sigma_2\sigma_1^{-1}(x-a),\sigma_2^2(1-\rho^2)) N(b+ρσ2σ11(xa),σ22(1ρ2))
    • E ( Y ) = E [ E ( Y ∣ X ) ] E(Y)=E[E(Y|X)] E(Y)=E[E(YX)]

方差与矩

  • 方差 D ( X ) ≜ E ( X − E ( X ) ) 2 = E ( X 2 ) − ( E ( X ) ) 2 D(X)\triangleq E(X-E(X))^2=E(X^2)-(E(X))^2 D(X)E(XE(X))2=E(X2)(E(X))2
  • 常见的方差
    • X ∼ B ( n , p ) , D X = n p ( 1 − p ) X\sim B(n,p), DX = np(1-p) XB(n,p),DX=np(1p)
    • X ∼ P ( λ ) , D X = λ X\sim P(\lambda),DX=\lambda XP(λ),DX=λ
    • X ∼ U ( a , b ) , D X = ( b − a ) 2 12 X\sim U(a,b),DX=\frac{(b-a)^2}{12} XU(a,b),DX=12(ba)2
    • X ∼ E ( λ ) , D X = 1 λ 2 X\sim E(\lambda),DX=\frac{1}{\lambda^2} XE(λ),DX=λ21
    • X ∼ N ( μ , σ 2 ) , D X = σ 2 X\sim N(\mu,\sigma^2),DX=\sigma^2 XN(μ,σ2),DX=σ2
  • 方差的性质
    • D ( C ) = 0 D(C)=0 D(C)=0
    • D ( k X ) = k 2 D ( X ) D(kX)=k^2D(X) D(kX)=k2D(X)
    • X , Y X,Y X,Y独立,则 D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)
  • :设 X X X为随机变量, c c c为常熟, k k k为正整数,则量 E [ ( X − c ) k ] E[(X-c)^k] E[(Xc)k]称为 X X X关于 c c c点的 k k k阶矩
    • c = 0 c = 0 c=0 a k = E ( X k ) a_k=E(X^k) ak=E(Xk),称为 X X X k k k阶原点矩
    • c = E ( X ) c=E(X) c=E(X),这时 μ k = E ( X − E X ) k \mu_k=E(X-EX)^k μk=E(XEX)k称为 X X X k k k阶中心矩
    • 偏度系数 β 1 = μ 3 / μ 2 3 / 2 \beta_1=\mu_3/\mu_2^{3/2} β1=μ3/μ23/2(可忽略)
    • 峰度系数 β 2 = μ 4 / μ 2 2 \beta_2=\mu_4/\mu_2^2 β2=μ4/μ22(可忽略)

协方差与相关系数

协方差

  • 协方差 ( X , Y ) (X,Y) (X,Y) 2 − d i m   r . v . 2-dim\ r.v. 2dim r.v.,称 E ( X − E X ) ( Y − E Y ) E(X-EX)(Y-EY) E(XEX)(YEY) X , Y X,Y X,Y协方差,记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)
  • C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
    • X , Y X,Y X,Y独立, E ( X Y ) = E ( X ) E ( Y ) ⇒ C o v ( X , Y ) = 0 E(XY)=E(X)E(Y)\Rightarrow Cov(X,Y)=0 E(XY)=E(X)E(Y)Cov(X,Y)=0
    • C o v ( X , X ) = D X Cov(X,X)=DX Cov(X,X)=DX
  • 协方差的性质
    • C o v ( X , Y ) = C o c ( Y , X ) Cov(X,Y)=Coc(Y,X) Cov(X,Y)=Coc(Y,X)
    • C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
    • C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
    • D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X+Y)=D(X)+D(Y)+2Cov(X,Y)

相关系数

  • 相关系数 ( X , Y ) 为 2 − d i m   r . v . (X,Y)为2-dim \ r.v. (X,Y)2dim r.v. ∃ D X , D Y > 0 , C o v ( X , Y ) \exist DX,DY>0,Cov(X,Y) DX,DY>0,Cov(X,Y) ρ X Y ≜ C o v ( X , Y ) D X D Y \rho_{XY}\triangleq\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXYDX DY Cov(X,Y),称 ρ X Y \rho_{XY} ρXY ( X , Y ) (X,Y) (X,Y)相关系数
    • I f   ρ X Y = 0 If\ \rho_{XY}=0 If ρXY=0,称 X , Y X,Y X,Y不相关
    • X , Y 独 立 ⇒ X , Y 不 相 关 X,Y独立\Rightarrow X,Y不相关 X,YX,Y X , Y 不 相 关 ⇏ X , Y 独 立 X,Y不相关 \nRightarrow X,Y独立 X,YX,Y
    • I f   ρ X Y = 1 If\ \rho_{XY}=1 If ρXY=1,称 X , Y X,Y X,Y正相关
    • I f   ρ X Y = − 1 If\ \rho_{XY}=-1 If ρXY=1,称 X , Y X,Y X,Y负相关
  • 性质
    • ∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq 1 ρXY1
    • ρ X Y = − 1 ⇔ P { Y = a X + b } = 1 ( a , b 常 数 且 a < 0 ) \rho_{XY}=-1\Leftrightarrow P\{Y=aX+b\}=1(a,b常数且a<0) ρXY=1P{Y=aX+b}=1(a,ba<0)
    • ρ X Y = 1 ⇔ P { Y = a X + b } = 1 ( a , b 常 数 且 a > 0 ) \rho_{XY}=1\Leftrightarrow P\{Y=aX+b\}=1(a,b常数且a>0) ρXY=1P{Y=aX+b}=1(a,ba>0)
    • ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ),则 X , Y 独 立 ⇒ X , Y 不 相 关 ⇔ ρ = 0 X,Y独立\Rightarrow X,Y不相关 \Leftrightarrow \rho=0 X,YX,Yρ=0

大数定理和中心极限定理

车比雪夫不等式与大数定理

  • 车比雪夫不等式
    • X X X是随机变量, ∃ E X , D X \exist EX,DX EX,DX ∀ ϵ > 0 , 则 P { ∣ X − E X ∣ < ϵ } ≥ 1 − D X ϵ 2 \forall \epsilon>0,则P\{|X-EX|<\epsilon\}\geq 1-\frac{DX}{\epsilon^2} ϵ>0,P{XEX<ϵ}1ϵ2DX
    • P { ∣ X − E X ∣ ≥ ϵ } ≤ D X ϵ 2 P\{|X-EX|\geq \epsilon\}\leq \frac{DX}{\epsilon^2} P{XEXϵ}ϵ2DX
  • 大数定律
    • 车比雪夫: I f X 1 , ⋯   , X n 相 互 独 立 , ∃ c > 0 , 使 得 D X i ≤ c If X_1,\cdots,X_n相互独立,\exist c>0,使得DX_i\leq c IfX1,,Xnc>0使DXic
      • ∀ ϵ > 0 , 有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E X i ∣ < ϵ } = 1 \forall\epsilon>0,有\lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^nEX_i|<\epsilon\}=1 ϵ>0,limnP{n1i=1nXin1i=1nEXi<ϵ}=1
    • 独立同分布: I f X 1 , ⋯   , X n 独 立 同 分 布 , ∃ E X i = μ , ∃ D X i = σ 2 If X_1,\cdots,X_n独立同分布,\exist EX_i=\mu,\exist DX_i=\sigma^2 IfX1,,XnEXi=μDXi=σ2
      • ∀ ϵ > 0 , 有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ϵ } = 1 \forall\epsilon>0,有\lim_{n\rightarrow\infty}P\{|\frac{1}{n}\sum_{i=1}^nX_i-\mu|<\epsilon\}=1 ϵ>0,limnP{n1i=1nXiμ<ϵ}=1

中心极限定理

  • L e v y − L i n d b e r g Levy-Lindberg LevyLindberg:若 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn独立同分布, ∃ E X i = μ , D X i = σ 2 \exist EX_i=\mu,DX_i=\sigma^2 EXi=μ,DXi=σ2
    • ∑ i = 1 n X i ∼ N ( n μ , n σ 2 ) \sum_{i=1}^nX_i\sim N(n\mu,n\sigma^2) i=1nXiN(nμ,nσ2)
  • L a p l a c e Laplace Laplace:设 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn独立同分布,于 X i ∼ B ( 1 , p ) X_i\sim B(1,p) XiB(1,p)
    • ∑ i = 1 n X i ∼ N ( n p , n p ( 1 − p ) ) \sum_{i=1}^nX_i\sim N(np,np(1-p)) i=1nXiN(np,np(1p))

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值