LeetCode每日一题 爬楼梯(一维动态规划)

题目描述

  1. 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
  2. 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

解题思路:

1.动态规划  爬到第x级台阶的方案数是爬到第x-1级台阶的方案数和爬到第x-2级台阶的方案数和

2.通项公式

题解:

思路一:

class Solution {
    public int climbStairs(int n) {
        int p=0,q=0,r=1;
        for(int i=1;i<=n;++i)
        {
            p=q;
            q=r;
            r=p+q;
        }
        return r;
    }
}

思路二:

class Solution {
    public int climbStairs(int n) {
        double sqrt5=Math.sqrt(5);
        double fibn=Math.pow((1+sqrt5)/2,n+1)-Math.pow((1-sqrt5)/2,n+1);
        return (int)Math.round(fibn/sqrt5);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值