题目描述
- 假设你正在爬楼梯。需要
n
阶你才能到达楼顶。 - 每次你可以爬
1
或2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
提示:
1 <= n <= 45
解题思路:
1.动态规划 爬到第x级台阶的方案数是爬到第x-1级台阶的方案数和爬到第x-2级台阶的方案数和
2.通项公式
题解:
思路一:
class Solution {
public int climbStairs(int n) {
int p=0,q=0,r=1;
for(int i=1;i<=n;++i)
{
p=q;
q=r;
r=p+q;
}
return r;
}
}
思路二:
class Solution {
public int climbStairs(int n) {
double sqrt5=Math.sqrt(5);
double fibn=Math.pow((1+sqrt5)/2,n+1)-Math.pow((1-sqrt5)/2,n+1);
return (int)Math.round(fibn/sqrt5);
}
}