经典算法之快速排序(QuickSort)

在这里插入图片描述

活动地址:CSDN21天学习挑战赛

快速排序

       通过一趟排序将待排元素分成独立的两部分,其中一部分为比基准数小的元素,另一部分则是比基准数大的元素。然后对这两部分元素再按照前面的算法进行排序,直到每一部分的元素都只剩下一个。

本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

算法原理

  • 从数列中挑出一个元素作为基准点

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面

  • 然后基准值左右两边,重复上述步骤

  • 通过递归把基准值元素左右两侧的数组排序,排完之后,整个数组就排序完成了

图解

问题描述:
给定一个无序排列的数组 nums,使其能够按照有序输出

示例:

输入: nums = [431296],
输出: nums = [123469]

图解如下:

在这里插入图片描述

Java代码实现

核心代码

public class QuickSort {
    //比较 v 是否小于 w
    public static boolean less(Comparable v,Comparable w){
        return v.compareTo(w) < 0;
    }//数组元素交换位置
    private static void swap(Comparable[] a,int i,int j){
        Comparable temp;
        temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
    //排序
    public static void sort(Comparable[] a){
        int l = 0;
        int h = a.length - 1;
        sort(a,l,h);
    }private static void sort(Comparable[] a,int l,int h){
        if (h <= l)  return;
        //对数组进行分组(左右两个数组)
        // i 表示分组之后基准值的索引
        int i = partition(a, l, h);
        //让左边的数组有序
        sort(a,l,i - 1);
        //让有边的数组有序
        sort(a,i + 1,h);
    }public static int partition(Comparable[] a,int l,int h){
        //确定基准值
        Comparable key = a[l];
        //定义两个指针
        int left = l;
        int right = h + 1;
        //切分
        while (true){
            //从右向左扫描,移动right指针找一个比基准值小的元素,找到就停止
            while (less(key,a[--right])){
                if (right == l)
                    break;
            }
            //从左向右扫描,移动left指针找一个比基准值大的元素,找到就停止
            while (less(a[++left],key)){
                if (left == h)
                    break;
            }
            if (left>=right){
                break;
            }else {
                swap(a,left,right);
            }
        }
        //交换基准值
        swap(a,l,right);
        return right;
    }
}

public class QuickSortTest {
    public static void main(String[] args) {
        Integer[] arr = {3,1,2,4,9,6};
        QuickSort.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
}
//排序前:{3,1,2,4,9,6}
//排序后:{1,2,3,4,6,9}

运行结果:

在这里插入图片描述

算法分析

  • 时间复杂度

       快速排序的最佳情况就是每一次取到的元素都刚好平分整个数组,由于快速排序用到了递归调用,因此计算其时间复杂度也需要用到递归算法来计算。T[n] = 2T[n/2] + f(n);此时时间复杂度是O(nlogn)。最坏的情况,则和冒泡排序一样,每次比较都需要交换元素,此时时间复杂度是O(n^2)。

因此,快速排序的时间复杂度为:O(nlogn)。

  • 空间复杂度

       空间复杂度主要是递归造成的栈空间的使用,最佳情况是,递归树的深度为log2n,此时空间复杂度为O(logn),最坏情况,则需要进行n‐1递归调用,此时空间复杂度为 O(n)。

因此,快速排序的空间复杂度为: O(logn)。

  • 70
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 95
    评论
快速排序QuickSort)是一种高效的排序算法,它基于分治策略。该算法首先选择一个元素作为基准值(pivot),然后将待排序数组按照基准值分成两个子数组,一边是所有小于基准值的元素,另一边是所有大于等于基准值的元素。然后对两个子数组分别递归地进行快速排序,最后将两个子数组合并起来即可得到完整的有序数组。 以下是使用C++实现快速排序的代码: ```cpp void quickSort(vector<int>& nums, int left, int right) { if (left >= right) return; // 递归终止条件 int pivot = nums[left]; // 选择第一个元素作为基准值 int i = left, j = right; while (i < j) { // 一趟快速排序 while (i < j && nums[j] >= pivot) j--; // 从右往左找到第一个小于基准值的元素 if (i < j) nums[i++] = nums[j]; // 将该元素放入左半部分 while (i < j && nums[i] < pivot) i++; // 从左往右找到第一个大于等于基准值的元素 if (i < j) nums[j--] = nums[i]; // 将该元素放入右半部分 } nums[i] = pivot; // 将基准值放入合适的位置 quickSort(nums, left, i - 1); // 递归地对左半部分进行快速排序 quickSort(nums, i + 1, right); // 递归地对右半部分进行快速排序 } ``` 其中,`nums`表示待排序数组,`left`和`right`表示当前子数组的左右边界(初始时应为0和`nums.size()-1`)。我们首先选择第一个元素作为基准值,然后使用双指针i和j在数组中进行一趟快速排序,将小于基准值的元素放入左半部分,将大于等于基准值的元素放入右半部分。最后将基准值放入合适的位置,并递归地对左右两个子数组进行快速排序

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 95
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿莫 夕林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值