面试题 ---快速排序的空间复杂度是多少?时间复杂度的最好最坏的情况是多少,有哪些优化方案?

 

Array.prototype.quickSort = function() {
		const rec =(arr) =>{
			if(arr.length === 1){return arr}
			// 分别存放 前后的数组
		   const left = []
		   const right = []
		   // 设置一个基准
		   const mid = arr[0]
		   //进行分区
		   for(let i =1; i<arr.length; i+=1){
			   if(arr[i] < mid){
				   left.push(arr[i])
			   }else{
				   right.push(arr[i])
			   }
		   }
		   
		   return [...rec(left),mid,...rec(right)] //...用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中
		}
		const res = rec(this)
		res.forEach((n,i)=>{this[i] = n})
	}
	const arr = [ 5,4,3,2,1,6,9,8,7]
	arr.quickSort()
	console.log(arr)

快速排序的空间复杂度是多少?

主要是递归造成的栈空间的使用,最好情况,递归树的深度为 log2​n

空间复杂度也就为 O(logn)

最坏情况

需要进行n‐1递归调用,其空间复杂度为O(n),

平均情况,

空间复杂度也为O(logn)。

时间复杂度的最好最坏的情况是多少,有哪些优化方案?

在最优的情况下

快速排序算法的时间复杂度为O(nlogn)。

最坏的情况

待排序的序列为正序或者逆序,每次划分只得到一个比上一次划分少一个记录的子序列,注意另一个为空。如果递归树画出来,它就是一棵斜树

此时需要执行n‐1次递归调用,且第i次划分需要经过n‐i次关键字的比较才能找到第i个记录,也就是枢轴的位置,因此比较次数为

img

最终其时间复杂度为O(n^2)。

时间复杂度优化:
使用三者取中的方法可以有效降低最坏情况下的时间复杂度。
三者取中的意思,就是将枢轴的值设置为 A[low] 、A[(low + high)/2] 、A[high] 中的中间值。

 

 

 

======================== 

只是整理 不确定回答的对不对

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想是坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值