背包五讲之Ⅲ:多重背包问题

这篇博客介绍了背包问题的几种类型,包括0-1背包、完全背包、多重背包、分组背包和二维费用的背包。通过实例展示了如何用C++解决这些问题,并讨论了如何通过二进制优化和打包处理来降低时间复杂度,从而应对大数据量的情况。此外,还提供了Java代码实现二进制优化的解决方案。
摘要由CSDN通过智能技术生成

有关其他的背包问题👇👇👇
背包五讲合集:0-1背包、完全背包、多重背包、分组背包、二维费用的背包。



题目描述

有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

朴素做法

二维

该问题类似于完全背包或者说就是完全背包的一种特殊形式,一些定义基本都是没变

具体看这篇👉背包五讲之Ⅱ:完全背包问题

但是注意到这里的条件从每件物品的∞个变为si个,所以不再有转移方程

dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])

存在。用朴素方法做的话,就老实对于每件物品用k枚举,每次比较并更新的对象都是dp[i][j],直到k <= s[i] && k * v[i] <= j条件不成立为止。


C++代码

#include <iostream>
#include <algorithm>

using namespace std;

int N, V;
int v[110], w[110], s[110];
int dp[110][110];

int main()
{
    cin >> N >> V;
    for (int i = 1; i <= N; i ++ )
        cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1;i <= N;i ++)
        for (int j = 1;j <= V;j ++){
            for(int k = 0;k <= s[i] && k * v[i] <= j;k ++){
                dp[i][j] = max(dp[i][j], dp[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    cout << dp[N][V] << endl;
    return 0;
}

一维

同样地,利用滚动数组优化空间复杂度降至一维,注意j的循环顺序,其他的基本把dp[i][j]—>f[j]就行。

C++代码

#include <iostream>
#include <algorithm>

using namespace std;

int N, V;
int v[110], w[110], s[110];
int f[110];

int main()
{
    cin >> N >> V;
    for (int i = 1; i <= N; i ++ )
        cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1;i <= N;i ++)
        for (int j = V;j >= 1;j --){
            for(int k = 0;k <= s[i] && k * v[i] <= j;k ++){
                f[j] = max(f[j], f[j - k * v[i]] + k * w[i]);
            }
        }
    cout << f[V] << endl;
    return 0;
}

但这种朴素做法如果遇到数据量稍微大点的肯定会T掉,所以有下面的优化做法。


二进制优化

打包处理

对于每次给定的si个的同种物品,我们可以对其进行 “打包成多个大物品” 操作。从本质上来看,多重背包相较于0-1背包的复杂之处仅仅在于物品数量上的选择不同,多重背包朴素做法的时间复杂度基本是 O(n^3) 的,而0-1背包是 O(n^2) ,所以如果能缩小物品数量选择的差异那么就能将时间复杂度逼近到O(n^2)

而何为“打包”呢?举个例子,对于给定的第i类物品(v[i],w[i])有9个的大前提下,我们可以从两个角度来看它:

  1. 由9个属性均为(v[i],w[i])的相同物品组成了这一类。

  2. 先对9进行二进制拆分处理,由于1+2+4+2=9,那9可以由1、2、4、2 (注意最后这个2是9取二进制整后余下来的) 这四个数来构成,它的意义在于,我每次选这类物品时,注定选择的数量是0~9之间的,而刚刚进过二进制拆分的四个数(以及0)可以 恰好地表示这区间的任何一个数

    表示法 3:1 + 2;5:1 + 2 + 2;6:2 + 4;7:1 + 2 + 4

    然后这9个第i类物品,对其进行打包,得到4个大物品,属性分别为:

    1 * (v[i],w[i]),2 * (v[i],w[i]),4 * (v[i],w[i]),2 * (v[i],w[i])

这样一来如果最优方案里面会选择这第i类物品,那其选择数量必定是这4个大物品构成的排列组合。此时不再将这4个物品看成是一类物品衍生出的,而是4个 “新的单个物品” ,然后按照0-1背包的模板正常dp做,就可以求出最优解。


这样做复杂度降低的原因,还是以上例说明,原本9个同种物品,在i-j的内循环里需要枚举9次来进行max()操作,而二进制优化后化9为4,只需进行4次枚举操作来找出组合方案就达到了目的。换句话说,将n次枚举变为了 ⌈logn⌉ 次枚举,因此复杂度也从 O(n^3) 降到约 O(n^2 * logn)

Java代码

import java.util.*;

class Item{     //打包后的大物品
    public int v;
    public int w;
    public Item(int v_, int w_){
        v = v_;
        w = w_;
    }
}

public class Main{
    public static int [] f = new int[2010];     //直接一维优化
    public static int v = 0, w = 0, s = 0;
    public static int N = 0, V = 0;
    public static List<Item> items = new ArrayList<>();     //装大物品
    
    public static void main(String[] args){
        Scanner in = new Scanner(System.in);
        N = in.nextInt();
        V = in.nextInt();
        for(int i = 1;i <= N;i ++){
            v = in.nextInt();
            w = in.nextInt();
            s = in.nextInt();
            for(int k = 1;k <= s;k *= 2){               //二进制拆分
                s -= k;
                items.add(new Item(k * v, k * w));
            }
            if(s > 0)       items.add(new Item(s * v, s * w));	//取出余下的
        }
        in.close();
        for(var it : items){            //拆分后就视为0-1背包了,按照模板正常做
            for(int j = V;j >= it.v;j --)
                f[j] = Math.max(f[j], f[j - it.v] + it.w);
        }
        System.out.println(f[V]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值