筛质数(埃氏筛+欧拉筛)


题目描述

给定一个正整数 n n n,请你求出 1 ∼ n 1∼n 1n 中质数的个数。

输入格式
共一行,包含整数 n n n

输出格式
共一行,包含一个整数,表示 1 ∼ n 1∼n 1n 中质数的个数。

数据范围
1 ≤ n ≤ 1 0 6 1≤n≤10^6 1n106

输入样例:

8

输出样例:

4

埃氏筛

埃氏筛的基本思想来源于这么一个事实:
对于任意一个数 n u m num num,它的倍数即 i × n u m , i ≥ 2 i × num,i ≥2 i×numi2,注定不可能是质数,因为这个倍数的存在说明了 i × n u m i × num i×num有因子 i i i,所以可以给这些 i × n u m i × num i×num打上一个标记true,表示它被过滤出质数集合里了,这样做的好处是可以减少循环的操作次数,用st[]数组表示数是否被筛掉,则if(st[i])满足时直接continue就行。
那么筛数的操作如下所示:

for(int j = i + i;j <= n;j += i)        st[j] = true;

由于筛数也是比较耗时间的,是否可以优化?再进一步地想,其实只需要对于那些质数进行筛数操作就行了,由于唯一分解定理的可以知道,合数一定会是被它的质因数给筛掉的,而不会造成合数筛掉其成倍数的合数这个重复的操作,所以只在确定了i是质数时才让其进行筛数。

这样做的话时间复杂度是 O ( n × l o g ( l o g n ) ) O(n×log(logn)) O(n×log(logn)),数学上的证明还可再查相关资料。

C++代码

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1e6 + 10;

int primes[N];
bool st[N];     //st[i]为true表示这个数被筛掉了;false表示没被筛掉,是质数
int n;

int get_primes(int n){
    int cnt = 0;
    
    for(int i = 2;i <= n;i ++){
        if(st[i])           continue;
        primes[cnt ++] = i;
        for(int j = i + i;j <= n;j += i)        st[j] = true;
    }
    
    return cnt;
}

int main(){
    cin >> n;
    
    int res = get_primes(n);
    
    cout << res << endl;
    return 0;
}

线性筛(欧拉筛)

即便埃氏筛的 “只对质数做筛操作” 那一步已经做了很好的优化,但仍然还是存在重复的筛数操作而浪费一定的时间,例如37都会对21进行标记。
那么更好的优化方式就是使筛数操作做到不重不漏,那就是线性筛。

线性筛来源于这样一个事实:任何一个合数,只需要利用它的最小质因数筛掉它就可以了。就像上述例子中21只需要被3筛了就行了,再或是对于55,只需要5的时候就筛掉。
不同的是,线性筛要对每个数都进行一遍筛数操作。

这样优化后的复杂度就变为了 O ( n ) O(n) O(n),数学上的证明还可再查相关资料。

更具体的解析可以看这篇:AcWing 868. 筛质数

C++代码

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1e6 + 10;

int primes[N];
bool st[N];     //st[i]为true表示这个数被筛掉了;false表示没被筛掉,是质数
int n;

int get_primes(int n){
    int cnt = 0;
    
    for(int i = 2;i <= n;i ++){
        if(!st[i])      primes[cnt ++] = i;
        
        //下面几步使保证每一个数i都被且仅被其最小的质因数筛掉
        for(int j = 0;primes[j] <= n / i;j ++){
            st[primes[j] * i] = true;
            if(i % primes[j] == 0)      break;		//因为 primes[j] 是从小到大枚举的,所以如果存在 i % primes[j] == 0 就说明 primes[j] 已经是 i 的最小质因子了)
        }
    }
    
    return cnt;
}

int main(){
    cin >> n;
    
    int res = get_primes(n);
    
    cout << res << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值