基于PyTorch搭建LeNet卷积神经网络识别FasionMNIST数据集

基于PyTorch搭建LeNet卷积神经网络识别FasionMNIST数据集

LeNet网络介绍

LeNet-5由LeCun等人于1998年提出,是一种用于手写体字符识别的卷积神经网络。出自论文《Gradient-Based Learning Applied to Document Recognition》

网络结构


LeNet5网络结构主要分为两部分,第一部分为卷积层与池化层,第二部分为全连接层。

Pytorch代码实现

在论文中,作者采用的是平均池化层,并使用Sigmoid作为激活函数。但目前在图像处理领域,最大池化层与Rule激活函数更为常用。

# LeNet5
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, padding=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = x.view(-1, 400)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return F.log_softmax(x, dim=1)

FasionMNIST数据集介绍

Fashion MNIST/服饰数据集包含70000张灰度图像,其中包含60,000个示例的训练集和10,000个示例的测试集,每个示例都是一个28x28灰度图像,分为以下几类:t-shirt(T恤),trouser(牛仔裤),pullover(套衫),dress(裙子),coat(外套),sandal(凉鞋),shirt(衬衫),sneaker(运动鞋),bag(包),ankle boot(短靴)

代码实现

import torch
from torch import nn
import torchvision
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt


n_epochs = 10
batch_size_train = 128
batch_size_test = 1000
learning_rate = 0.001
log_interval = 10

train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.FashionMNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor()
                               ])), batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.FashionMNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor()
                               ])), batch_size=batch_size_test, shuffle=True)


# LeNet5
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, kernel_size=5, padding=2)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = x.view(-1, 400)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return F.log_softmax(x, dim=1)


network = Net().cuda()  # gpu加速
optimizer = optim.Adam(network.parameters(), lr=learning_rate)
train_losses = []


def train(epoch):
    network.train()  # 训练模式
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()  # 梯度清零
        output = network(data.cuda())
        loss = F.nll_loss(output, target.cuda())
        loss.backward()  # 反向传播
        optimizer.step()  # 参数更新
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data),
                                                                           len(train_loader.dataset),
                                                                           100. * batch_idx / len(train_loader),
                                                                           loss.item()))
            train_losses.append(loss.item())
            torch.save(network.state_dict(), './model/model_FashionMnist.pth')
            torch.save(optimizer.state_dict(), './model/optimizer_FashionMnist.pth')


def test():
    network.eval()  # 测试模式
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data_cuda = data.cuda()
            target_cuda = target.cuda()
            output = network(data_cuda)
            test_loss += F.nll_loss(output, target_cuda, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target_cuda.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

plt.plot(train_losses)
plt.show()

测试结果:

Test set: Avg. loss: 0.3134, Accuracy: 8842/10000 (88%)

损失函数图像:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是现代的深度学习框架,为研究人员和开发人员提供了很好的工具和支持。在PyTorch中,我们可以轻松地搭建3D卷积神经网络。 首先,我们需要导入必要的包。PyTorch包含了torch.nn模块,它提供我们搭建神经网络所需的各种工具和模块。我们还需要一个包,就是torchvision.models模块,里面包含已经搭好的模型,我们可以使用它们。 接着,我们要定义我们的3D卷积神经网络。定义方法如下: ```python import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv3d(1, 64, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm3d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv3d(64, 128, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm3d(128) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv3d(128, 256, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm3d(256) self.relu3 = nn.ReLU(inplace=True) self.pool = nn.MaxPool3d((2, 2, 2)) self.fc1 = nn.Linear(256 * 8 * 8 * 8, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.pool(x) x = x.view(-1, 256 * 8 * 8 * 8) x = self.fc1(x) x = self.fc2(x) return x ``` 这里我们定义了一个名为Net的类。在__init__函数中,我们定义了三层卷积层,每一层后面跟着一个BatchNormalization层和ReLU激活层。之后我们定义一个池化层,最后是两层全连接层,其中第二层的输出是类别数目。 在forward函数中,我们把输入x通过卷积层、池化层、全连接层的顺序处理,最后输出。 接着,我们就可以对我们的三维数据进行训练了,使用PyTorch内置的optim包进行优化器的定义,再使用loss进行计算。 其中,数据需要先引入PyTorch,再进行一些简单的预处理,然后导入DataLoader中,以便进行网络训练。 ```python import torch.optim as optim net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) trainloader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4) ``` 最后,我们就可以进行训练了。在训练过程中,我们一般选择mini-batch的方式进行,即把数据集分成若干个小批次进行训练,并在每个小批次训练完后更新网络权重。 ```python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/100)) running_loss = 0.0 print('Finished Training') ``` 随着迭代次数的增加,我们的网络会逐渐提高准确性。在训练完整个数据集后,我们可以对网络进行评估并进行可视化分析。 以上是使用PyTorch搭建3D卷积神经网络的过程。我们可以通过PyTorch提供的工具和模块,轻松地建立自己的卷积神经网络,并进行训练、评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值