Pytorch深度学习-神经网路-最大池化的使用(Pooling layers)

MaxPool2d
  1. API
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False
  1. 参数
kernel_size (Union[int, Tuple[int, int]]) – 要占用最大值的窗口大小
stride (Union[int, Tuple[int, int]]) – 窗口的步幅。默认值为 `kernel_size`
padding (Union[int, Tuple[int, int]]) – 要在两边添加的隐式负无穷大填充
dilation (Union[int, Tuple[int, int]]) – 控制窗口中元素步幅的参数
return_indices (bool) – 如果 `True` ,将返回最大索引和输出。对`torch.nn.MaxUnpool2d` 以后有用
ceil_mode (bool) – 当为 True 时,将使用 ceil (向上取整)而不是 floor(向下取整) 来计算输出形状,即即使最后剩余数据不够stride也要进行计算
  1. 代码示例
'''
tensor([[[[2., 3.],
          [5., 1.]]]])
'''
import torch  
import torch.nn as nn  
import torch.nn.functional as F  
from torch.nn import MaxPool2d  
  
input = torch.tensor([[1,2,0,3,1],  
                      [0,1,2,3,1],  
                      [1,2,1,0,0],  
                      [5,2,3,1,1],  
                      [2,1,0,1,1]],dtype=torch.float32)  
kernel = torch.tensor([[1,2,1],  
                       [0,1,0],  
                       [2,1,0]])  
input = torch.reshape(input,(-1,1,5,5))  
class maxpool_test(nn.Module):  
    #input里面需要时小数,如果是整数会默认识别为Long型  
    def __init__(self, *args, **kwargs) -> None:  
        super().__init__(*args, **kwargs)  
        self.maxpool1 = MaxPool2d(kernel_size=3,stride=3,ceil_mode=True)  
  
    def forward(self,input):  
        output = self.maxpool1(input)  
        return output  
  
test = maxpool_test()  
output = test(input)  
print(output)
  1. 作用:减少数据信息但是不减少特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值