torch.unsqueeze()函数理解

torch.unsqueeze()函数用于在给定的维度上增加一个新的尺寸,例如将一维张量转换为二维,二维转三维等。dim参数指定插入新维度的位置,可以是负数表示从末尾计数。文章通过示例展示了不同维度张量使用unsqueeze后的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.unsqueeze()函数理解

torch.unsqueeze(input, dim)  使用时等同于  input.unsqueeze(dim)

torch.unsqueeze()函数起到升维的作用,dim等于几表示在第几维度加一,比如原来x的size=([4]),x.unsqueeze(0)之后就变成了size=([1, 4]),而x.unsqueeze(1)之后就变成了size=([4, 1]),注意dim∈[-input.dim() - 1, input.dim() + 1]
例如

  1. 输入一维张量,即input.dim()=1
# 输入:
x = torch.tensor([1, 2, 3, 4])  # x.dim()=1
print(x)
print(x.shape)
y = x.unsqueeze(0)
print(y)
print(y.shape)  # 此时y.dim()=2
z = x.unsqueeze(1)
print(z)
print(z.shape)  # 此时z.dim()=2
# 输出:
tensor([1, 2, 3, 4])
torch.Size([4])
tensor([[1, 2, 3, 4]])
torch.Size([1, 4])
tensor([[1],
        [2],
        [3],
        [4]])
torch.Size([4, 1])
  1. 输入二维张量,即input.dim()=2
# 输入:
x = torch.tensor([[1, 2, 3], [4, 5, 6]])  # x.dim()=2
print(x)
print(x.shape)
y = x.unsqueeze(0)
print(y)
print(y.shape)  # 此时y.dim()=3
z = x.unsqueeze(1)
print(z)
print(z.shape)  # 此时z.dim()=3
# 输出:
tensor([[1, 2, 3],
        [4, 5, 6]])
torch.Size([2, 3])
tensor([[[1, 2, 3],
         [4, 5, 6]]])
torch.Size([1, 2, 3])
tensor([[[1, 2, 3]],

        [[4, 5, 6]]])
torch.Size([2, 1, 3])
  1. 输入四维张量,即input.dim()=4
# 输入:
x = torch.tensor([[[[1, 2, 3], 
                    [4, 5, 6]],
                [[0, 2, 1], 
                 [1, 5, 2]]],
                  
                [[[1, 2, 3], 
                  [4, 5, 6]],
                [[0, 2, 1], 
                 [1, 5, 2]]]])
print(x)
print(x.shape)

y2 = x.unsqueeze(2)
print(y2)
print(y2.shape)

y3 = x.unsqueeze(3)
print(y3)
print(y3.shape)
# 输出:
tensor([[[[1, 2, 3],
          [4, 5, 6]],

         [[0, 2, 1],
          [1, 5, 2]]],


        [[[1, 2, 3],
          [4, 5, 6]],

         [[0, 2, 1],
          [1, 5, 2]]]])
torch.Size([2, 2, 2, 3])
tensor([[[[[1, 2, 3],
           [4, 5, 6]]],


         [[[0, 2, 1],
           [1, 5, 2]]]],



        [[[[1, 2, 3],
           [4, 5, 6]]],


         [[[0, 2, 1],
           [1, 5, 2]]]]])
torch.Size([2, 2, 1, 2, 3])
tensor([[[[[1, 2, 3]],

          [[4, 5, 6]]],


         [[[0, 2, 1]],

          [[1, 5, 2]]]],



        [[[[1, 2, 3]],

          [[4, 5, 6]]],


         [[[0, 2, 1]],

          [[1, 5, 2]]]]])
torch.Size([2, 2, 2, 1, 3])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值