yolov5构架和yolov3

本文详细介绍了YOLO系列目标检测模型的发展,从YOLOv3到YOLOv5的改进点,包括多尺度特征利用、对象分类方法、损失函数设计、网络结构优化等。YOLOv5引入了cutmix、dropblock和标签平滑等技术提升训练效果,并优化了IOU损失为CIOU。同时,列举了不同规模的YOLOv5模型在速度和精度上的表现。此外,对比了YOLOv3的架构特点,强调了YOLO系列在小目标检测上的进步。
摘要由CSDN通过智能技术生成

yolov5构架和yolov4,yolov3

1.GitHub上开源的YOLOv5

代码地址:https://github.com/ultralytics/YOLOv5

预训练的检查点

模型大小
(像素)
地图值0.5: 0.95地图值
0.5
速度
CPU b1
(ms)
速度
V100 b1
(ms)
速度
V100 b32
(ms)
参数
(M)
FLOPs
@640 (B)
YOLOv5n64028.045.7456.30.61.94.5
YOLOv5s64037.456.8986.40.97.216.5
YOLOv5m64045.464.12248.21.721.249.0
YOLOv5l64049.067.343010.12.746.5109.1
YOLOv5x64050.768.976612.14.886.7205.7
YOLOv5n6128036.054.41538.12.13.24.6
YOLOv5s6128044.863.73858.23.612.616.8
YOLOv5m6128051.369.388711.16.835.750.0
YOLOv5l6128053.771.3178415.810.576.8111.4
YOLOv5x6
TTA
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-

yolov5和yolov3的特点

1.利用多尺度特征进行目标检测;先验框更丰富;

2.对象分类使用logistic代替了softmax,更适用于多标签分类任务。

3.yoloV3的损失函数分为三部分: box的损失:

 只有负责检测的gridcell中的anchor才会计入损失,对x,y,w,h分别求均方误差 置信度的损失 置信度的损失是二分类的交叉熵损失函数,所有的box都计入损失计算 分类的损失:

分类的损失是二分类的交叉熵损失,只有负责检测目标的才计算损失

4.最大的改进就是网络结构,使其更适合小目标检测  特征做的更细致,融入多持续特征图信息来预测不同规格物体 先验框更丰富了,3种scale,每种3个规格,一共9种

5. 正样本:首先计算目标中心点落在哪个grid上,然后计算这个grid对应的3个先验框(anchor)和目标真实位置的IOU值,取IOU值最大的先验框和目标匹配。那么该anchor 就负责预测这个目标,那这个anchor就作为正样本,将其置信度设为1,其他的目标值根据标注信息设置。

6.负样本:所有不是正样本的anchor都是负样本,将其置信度设为0,参与损失计算,其它的值不参与损失计算,默认为0。 FPN+PANET通过自底向上和自顶向下的方式,实现双方向的特征图融合,使得最终输出的3个特征图都具有了其他尺寸特征图的信息来提高准确。

2.yolov5构架

yolov5构架图

3.yolov5亮点

yolov5亮点增加训练难度,增强模型性能cutmix

 使用dropblock

增加标签平滑

 IOU转为CIOU

 4.YOLOV4架构图

5.YOLOV3架构图

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
YOLOv5的网络架构主要包括以下几个部分: 1. Backbone网络:YOLOv5使用了CSPDarknet53作为其骨干网络。CSPDarknet53是一种基于深度残差网络的骨干网络,它采用了Cross-Stage Partial Network (CSP)结构,将网络分成两个部分,每个部分都有一个子网络,分别用于提取不同尺度的特征。 2. Neck网络:YOLOv5使用了SPP(Spatial Pyramid Pooling)和PAN(Path Aggregation Network)作为其Neck网络。SPP可以在不改变输入大小的情况下对不同大小的感受野进行池化,从而提取更多的特征。PAN可以将来自不同尺度的特征图进行融合,从而增强特征表达能力。 3. Head网络:YOLOv5的Head网络由三个部分组成:Anchor-based Detection、Anchor-free Detection和Instance Segmentation。在Anchor-based Detection中,YOLOv5使用了YOLOv3中的Anchor Box方法来检测物体。在Anchor-free Detection中,YOLOv5使用了CenterNet方法来检测物体。在Instance Segmentation中,YOLOv5使用了PANet方法来进行实例分割。 4. Focus模块:YOLOv5中的Focus模块是一种新的卷积操作,它可以用来提取低分辨率图像中的高频信息。Focus模块主要由两个部分组成:Focus Split和Focus Concat。其中,Focus Split将输入张量沿着通道维度分成两份,然后将这两份在空间维度上错位相加,从而得到了含有更多高频信息的特征图。Focus Concat则将这两份特征图拼接在一起,得到最终的输出特征图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值