指数分布
指数分布(Exponential Distribution)是一种常见的连续型概率分布,通常用于描述事件之间的时间间隔。假设随机变量 ( X ) 服从参数为 ( \lambda ) 的指数分布,记作
指数分布的概率密度函数(PDF)为:
f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={ λe−λx0x≥0x<0
期望值
期望值(Expectation)表示随机变量的平均值。对于指数分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:
E ( X ) = ∫ 0 ∞ x f ( x ) d x \mathbb{E}(X) = \int_{0}^{\infty} x f(x) \, dx E(X)=∫0∞xf(x)dx
代入指数分布的概率密度函数:
E ( X ) = ∫ 0 ∞ x λ e − λ x d x \mathbb{E}(X) = \int_{0}^{\infty} x \lambda e^{-\lambda x} \, dx E(X)=∫0∞xλe−λxdx
将 (\lambda) 提取出来:
E ( X ) = λ ∫ 0 ∞ x e − λ x d x \mathbb{E}(X) = \lambda \int_{0}^{\infty} x e^{-\lambda x} \, dx E(X)=λ∫0∞xe−λxdx
为了计算这个积分,我们使用分部积分法。设:
u = x , d v = e − λ x d x u = x, \quad dv = e^{-\lambda x} \, dx u=x,dv=e−λxdx
则:
d u = d x , v = − 1 λ e − λ x du = dx, \quad v = -\frac{1}{\lambda} e^{-\lambda x} du=dx,v=−λ1e−λx
应用分部积分公式
∫ 0 ∞ x e − λ x d x = − x λ e − λ x ∣ 0 ∞ + ∫ 0 ∞ 1 λ e − λ x d x \int_{0}^{\infty} x e^{-\lambda x} \, dx = \left. -\frac{x}{\lambda} e^{-\lambda x} \right|_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{\lambda} e^{-\lambda x} \, dx ∫0∞xe−λxdx=−λxe