证明 指数分布 的期望和方差

指数分布

指数分布(Exponential Distribution)是一种常见的连续型概率分布,通常用于描述事件之间的时间间隔。假设随机变量 ( X ) 服从参数为 ( \lambda ) 的指数分布,记作 ( X \sim \text{Exp}(\lambda) )。

指数分布的概率密度函数(PDF)为:

f ( x ) = { λ e − λ x x ≥ 0 0 x < 0 f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={ λeλx0x0x<0

期望值

期望值(Expectation)表示随机变量的平均值。对于指数分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:

E ( X ) = ∫ 0 ∞ x f ( x )   d x \mathbb{E}(X) = \int_{0}^{\infty} x f(x) \, dx E(X)=0xf(x)dx

代入指数分布的概率密度函数:

E ( X ) = ∫ 0 ∞ x λ e − λ x   d x \mathbb{E}(X) = \int_{0}^{\infty} x \lambda e^{-\lambda x} \, dx E(X)=0xλeλxdx

将 (\lambda) 提取出来:

E ( X ) = λ ∫ 0 ∞ x e − λ x   d x \mathbb{E}(X) = \lambda \int_{0}^{\infty} x e^{-\lambda x} \, dx E(X)=λ0xeλxdx

为了计算这个积分,我们使用分部积分法。设:

u = x , d v = e − λ x   d x u = x, \quad dv = e^{-\lambda x} \, dx u=x,dv=eλxdx

则:

d u = d x , v = − 1 λ e − λ x du = dx, \quad v = -\frac{1}{\lambda} e^{-\lambda x} du=dx,v=λ1eλx

应用分部积分公式 ( \int u , dv = uv - \int v , du ):

∫ 0 ∞ x e − λ x   d x = − x λ e − λ x ∣ 0 ∞ + ∫ 0 ∞ 1 λ e − λ x   d x \int_{0}^{\infty} x e^{-\lambda x} \, dx = \left. -\frac{x}{\lambda} e^{-\lambda x} \right|_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{\lambda} e^{-\lambda x} \, dx 0xeλxdx=λxe

指数分布是一种连续概率分布,通常用于描述随机事件发生的时间间隔。其密度函数形式为 \( f(x; \lambda) = \lambda e^{-\lambda x} \),其中 \( \lambda \) 是率参数(即平均发生次数的倒数),\( x \geq 0 \)。 对于指数分布,它的期望值(均值)确实是其参数 \( \lambda \) 的估计。这是因为指数分布期望是其形状参数的倒数,即 \( E(X) = \frac{1}{\lambda} \)。 如果我们要证明某个统计量是 \( \lambda \) 的无偏估计,我们需要验证两个条件: 1. **无偏性**:期望值等于参数 \( E(\hat{\lambda}) = \lambda \),这里 \( \hat{\lambda} \) 是我们的估计量。 2. **一致性**:随着样本大小 \( n \) 趋向于无穷大,估计量的方差趋近于零,即 \( Var(\hat{\lambda}) \rightarrow 0 \),这表示估计的精度随着数据增加而提高。 对于指数分布的估计,例如基于最大似然估计法(MLE),我们可以直接计算出最大似然估计 \( \hat{\lambda} \) 是观察到的一个独立、同分布的随机变量序列的平均等待时间,其数学期望就是 \( \lambda \),因此满足了无偏性的条件。 至于一致性,由于指数分布的MLE有很好的理论基础,我们通常可以利用大样本定律(如中心极限定理)证明其随着样本量增大,估计的误差趋于零,因此 \( \hat{\lambda} \) 是一个一致估计。 总的来说,指数分布期望作为参数的估计是相合的,因为它不仅无偏,而且在大量观测下,其估计会越来越准确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值