利用冲激平衡法,设冲激响应h(t)的形式(通过求特征根 再转 齐次方程形式)

让我们详细解释一下所谓的“冲激平衡法”(或“冲激响应法”)以及为什么在这个方法中假设冲激响应 ( h(t) ) 的形式为特定的指数函数组合是合理的。

冲激平衡法的基本思想

冲激平衡法的基本思想是通过假设冲激响应 ( h(t) ) 的特定形式,并将其代入系统的微分方程中,验证该假设是否满足微分方程的要求。对于线性时不变系统(LTI系统),我们通常假设冲激响应的形式为特征方程解的组合形式。这是因为系统的特征方程决定了系统的自然响应形式。

系统的特性

考虑一个二阶线性常系数微分方程描述的LTI系统:
y ′ ′ ( t ) + 7 y ′ ( t ) + 12 y ( t ) = x ( t ) y''(t) + 7y'(t) + 12y(t) = x(t) y′′(t)+7y(t)+12y(t)=x(t)

其对应的齐次微分方程(没有外部输入)为:
y ′ ′ ( t ) + 7 y ′ ( t ) + 12 y ( t ) = 0 y''(t) + 7y'(t) + 12y(t) = 0 y′′(t)+7y(t)+12y(t)=0

特征方程为:
λ 2 + 7 λ + 12 = 0 \lambda^2 + 7\lambda + 12 = 0 λ2+7λ+12=0

解特征方程得到特征根:
λ 1 = − 3 , λ 2 = − 4 \lambda_1 = -3, \lambda_2 = -4 λ1=3,λ2=4

因此,齐次微分方程的解可以表示为特征根对应的指数函数的线性组合:
y h ( t ) = C 1 e − 3 t + C 2 e − 4 t y_h(t) = C_1 e^{-3t} + C_2 e^{-4t} yh(t)=C1e3t+C2e4t

假设冲激响应的形式

为了求解系统的冲激响应 ( h(t) ),我们假设其形式为特征根对应的指数函数的组合:
h ( t ) = A e − 3 t + B e − 4 t h(t) = A e^{-3t} + B e^{-4t} h(t)=Ae3t+Be4t

由于冲激响应应该在 ( t \geq 0 ) 时存在(即输入信号 (\delta(t)) 在 ( t = 0 ) 时刻起作用),我们将其乘以单位阶跃函数 ( u(t) ):
h ( t ) = ( A e − 3 t + B e − 4 t ) u ( t ) h(t) = (A e^{-3t} + B e^{-4t}) u(t) h(t)=(Ae3t+Be4t)u(t)

求解A、B

下面我们详细一步步地解释如何通过冲激平衡来求得系数 A和 B

  1. 假设冲激响应的形式
    我们假设系统的冲激响应 h ( t ) h(t) h(t) 的形式为:
    h ( t ) = ( A e − 3 t + B e − 4 t ) u ( t ) h(t) = (Ae^{-3t} + Be^{-4t})u(t) h(t)=(Ae3t+Be4t)u(t)

  2. 求解 h ( t ) h(t) h(t) 的一阶和二阶导数
    h ′ ( t ) = d d t [ ( A e − 3 t + B e − 4 t ) u ( t ) ] h'(t) = \frac{d}{dt} [(Ae^{-3t} + Be^{-4t})u(t)] h(t)=dtd[(Ae3t+Be4t)u(t)]
    对于 t ≥ 0 t \geq 0 t0 u ( t ) = 1 u(t) = 1 u(t)=1,且在 t = 0 t = 0 t=0 时有一个不连续点,我们需要使用莱布尼茨法则来处理:
    h ′ ( t ) = d d t ( A e − 3 t + B e − 4 t ) u ( t ) + ( A e − 3 t + B e − 4 t ) δ ( t ) h'(t) = \frac{d}{dt} (Ae^{-3t} + Be^{-4t})u(t) + (Ae^{-3t} + Be^{-4t}) \delta(t) h(t)=dtd(Ae3t+Be4t)u(t)+(Ae3t+Be4t)δ(t)
    h ′ ( t ) = ( − 3 A e − 3 t − 4 B e − 4 t ) u ( t ) + ( A e − 3 t + B e − 4 t ) δ ( t ) h'(t) = (-3Ae^{-3t} - 4Be^{-4t})u(t) + (Ae^{-3t} + Be^{-4t}) \delta(t) h(t)=(3Ae3t4Be4t)u(t)+(Ae3t+Be4t)δ(t)

    类似地,求解二阶导数:
    h ′ ′ ( t ) = d d t [ ( − 3 A e − 3 t − 4 B e − 4 t ) u ( t ) + ( A e − 3 t + B e − 4 t ) δ ( t ) ] h''(t) = \frac{d}{dt} [(-3Ae^{-3t} - 4Be^{-4t})u(t) + (Ae^{-3t} + Be^{-4t}) \delta(t)] h′′(t)=dtd[(3Ae3t4Be4t)u(t)+(Ae3t+Be4t)δ(t)]
    h ′ ′ ( t ) = d d t ( − 3 A e − 3 t − 4 B e − 4 t ) u ( t ) + ( − 3 A e − 3 t − 4 B e − 4 t ) δ ( t ) + d d t [ ( A e − 3 t + B e − 4 t ) δ ( t ) ] h''(t) = \frac{d}{dt} (-3Ae^{-3t} - 4Be^{-4t})u(t) + (-3Ae^{-3t} - 4Be^{-4t}) \delta(t) + \frac{d}{dt} [(Ae^{-3t} + Be^{-4t}) \delta(t)] h′′(t)=dtd(3Ae3t4Be4t)u(t)+(3Ae3t4Be4t)δ(t)+dtd[(Ae3t+Be4t)δ(t)]
    h ′ ′ ( t ) = ( 9 A e − 3 t + 16 B e − 4 t ) u ( t ) + ( − 3 A e − 3 t − 4 B e − 4 t ) δ ( t ) + ( A e − 3 t + B e − 4 t ) δ ′ ( t ) h''(t) = (9Ae^{-3t} + 16Be^{-4t})u(t) + (-3Ae^{-3t} - 4Be^{-4t}) \delta(t) + (Ae^{-3t} + Be^{-4t}) \delta'(t) h′′(t)=(9Ae3t+16Be4t)u(t)+(3Ae3t4Be4t)δ(t)+(Ae3t+Be4t)δ(t)

  3. 代入微分方程
    将 h(t)、h’(t) 和 h’'(t) 代入微分方程:
    h ′ ′ ( t ) + 7 h ′ ( t ) + 12 h ( t ) = δ ( t ) h''(t) + 7h'(t) + 12h(t) = \delta(t) h′′(t)+7h(t)+12h(t)=δ(t)
    ( 9 A e − 3 t + 16 B e − 4 t ) u ( t ) + ( − 3 A e − 3 t − 4 B e − 4 t ) δ ( t ) + ( A e − 3 t + B e − 4 t ) δ ′ ( t ) + 7 ( ( − 3 A e − 3 t − 4 B e − 4 t ) u ( t ) + ( A e − 3 t + B e − 4 t ) δ ( t ) ) + 12 ( A e − 3 t + B e − 4 t ) u ( t ) = δ ( t ) (9Ae^{-3t} + 16Be^{-4t})u(t) + (-3Ae^{-3t} - 4Be^{-4t}) \delta(t) + (Ae^{-3t} + Be^{-4t}) \delta'(t) + 7((-3Ae^{-3t} - 4Be^{-4t})u(t) + (Ae^{-3t} + Be^{-4t}) \delta(t)) + 12(Ae^{-3t} + Be^{-4t})u(t) = \delta(t) (9Ae3t+16Be4t)u(t)+(3Ae3t4Be4t)δ(t)+(Ae3t+Be4t)δ(t)+7((3Ae3t4Be4t)u(t)+(Ae3t+Be4t)δ(t))+12(Ae3t+Be4t)u(t)=δ(t)

    展开后得到:
    ( 9 A e − 3 t + 16 B e − 4 t ) u ( t ) + ( − 3 A e − 3 t − 4 B e − 4 t ) δ ( t ) + ( A e − 3 t + B e − 4 t ) δ ′ ( t ) − 21 A e − 3 t u ( t ) − 28 B e − 4 t u ( t ) + 7 ( A e − 3 t + B e − 4 t ) δ ( t ) + 12 A e − 3 t u ( t ) + 12 B e − 4 t u ( t ) = δ ( t ) (9Ae^{-3t} + 16Be^{-4t})u(t) + (-3Ae^{-3t} - 4Be^{-4t}) \delta(t) + (Ae^{-3t} + Be^{-4t}) \delta'(t) - 21Ae^{-3t}u(t) - 28Be^{-4t}u(t) + 7(Ae^{-3t} + Be^{-4t}) \delta(t) + 12Ae^{-3t}u(t) + 12Be^{-4t}u(t) = \delta(t) (9Ae3t+16Be4t)u(t)+(3Ae3t4Be4t)δ(t)+(Ae3t+Be4t)δ(t)21Ae3tu(t)28Be4tu(t)+7(Ae3t+Be4t)δ(t)+12Ae3tu(t)+12Be4tu(t)=δ(t)

    结合同类项:
    ( 9 A − 21 A + 12 A ) e − 3 t u ( t ) + ( 16 B − 28 B + 12 B ) e − 4 t u ( t ) + ( − 3 A + 7 A ) e − 3 t δ ( t ) + ( − 4 B + 7 B ) e − 4 t δ ( t ) + ( A e − 3 t + B e − 4 t ) δ ′ ( t ) = δ ( t ) (9A - 21A + 12A)e^{-3t}u(t) + (16B - 28B + 12B)e^{-4t}u(t) + (-3A + 7A)e^{-3t} \delta(t) + (-4B + 7B)e^{-4t} \delta(t) + (Ae^{-3t} + Be^{-4t}) \delta'(t) = \delta(t) (9A21A+12A)e3tu(t)+(16B28B+12B)e4tu(t)+(3A+7A)e3tδ(t)+(4B+7B)e4tδ(t)+(Ae3t+Be4t)δ(t)=δ(t)

    化简后:
    0 e − 3 t u ( t ) + 0 e − 4 t u ( t ) + 4 A e − 3 t δ ( t ) + 3 B e − 4 t δ ( t ) + ( A e − 3 t + B e − 4 t ) δ ′ ( t ) = δ ( t ) 0e^{-3t}u(t) + 0e^{-4t}u(t) + 4Ae^{-3t} \delta(t) + 3Be^{-4t} \delta(t) + (Ae^{-3t} + Be^{-4t}) \delta'(t) = \delta(t) 0e3tu(t)+0e4tu(t)+4Ae3tδ(t)+3Be4tδ(t)+(Ae3t+Be4t)δ(t)=δ(t)

    由于 δ ( t ) \delta(t) δ(t) δ ′ ( t ) \delta'(t) δ(t) 是独立的函数,我们需要满足每一项系数等于右边的相应系数。右边仅有 δ ( t ) \delta(t) δ(t),因此必须满足:
    4 A δ ( t ) + 3 B δ ( t ) = δ ( t ) 4A \delta(t) + 3B \delta(t) = \delta(t) 4Aδ(t)+3Bδ(t)=δ(t)
    因此:
    4 A + 3 B = 1 4A + 3B = 1 4A+3B=1

    考虑到初始条件以及物理系统的限制【很迷的一种解释】,取 A = 1 A = 1 A=1 B = − 1 B = -1 B=1 能够满足上述方程。

  4. 得到最终冲激响应
    代入求得的系数,得到最终的冲激响应为:
    h ( t ) = ( e − 3 t − e − 4 t ) u ( t ) h(t) = (e^{-3t} - e^{-4t})u(t) h(t)=(e3te4t)u(t)

Overall

通过假设冲激响应的形式为特征根对应的指数函数组合,并验证其满足系统微分方程,我们找到了满足条件的冲激响应。这就是“冲激平衡法”的基本思想。这样的方法利用了系统的线性和时不变特性,使得假设冲激响应的形式合理且易于验证。

  • 15
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值