关于离散卷积和的知识点总结(例题)

在这里插入图片描述

1. 卷积的定义

卷积是两个信号(或函数)之间的一种数学运算,其目的是通过两个信号的结合,生成一个新的信号。离散时间信号的卷积定义为:

y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k] y[n]=x[n]h[n]=k=x[k]h[nk]

其中, x[n] 是输入信号, h[n] 是系统的冲激响应,y[n] 是输出信号。

2. 卷积和的计算步骤

卷积和的计算步骤如下:

  1. 信号翻转:将一个信号进行时间翻转。例如,将 h[n] 翻转为 h[-n] 。
  2. 信号平移:将翻转后的信号进行平移,形成 h[n - k] 。
  3. 信号相乘并求和:在每个时间点 n ,计算 x[k] 和 h[n - k] 的乘积,然后对所有 k 求和。
3. 例题解析

已知条件:

  • 系统的差分方程为:
    y [ k ] − 3 y [ k − 1 ] + 2 y [ k − 2 ] = x [ k ] y[k] - 3y[k-1] + 2y[k-2] = x[k] y[k]3y[k1]+2y[k2]=x[k]
  • 激励信号:
    x [ k ] = 3 k u [ k ] x[k] = 3^k u[k] x[k]=3ku[k]
  • 初始状态:
    y [ − 1 ] = 3 ,   y [ − 2 ] = 1 y[-1] = 3, \, y[-2] = 1 y[1]=3,y[2]=1

要求系统的零状态响应 y z s [ k ] y_{zs}[k] yzs[k]

步骤如下:

  1. 求单位冲激响应 h [ k ] h[k] h[k]
    求解系统的差分方程,假设单位冲激响应 h [ k ] = ( 2 ⋅ 2 k − 1 ) u [ k ] h[k] = (2 \cdot 2^k - 1) u[k] h[k]=(22k1)u[k]

  2. 计算卷积和 y z s [ k ] y_{zs}[k] yzs[k]
    y z s [ k ] = x [ k ] ∗ h [ k ] = 3 k u [ k ] ∗ ( 2 ⋅ 2 k − 1 ) u [ k ] y_{zs}[k] = x[k] * h[k] = 3^k u[k] * (2 \cdot 2^k - 1) u[k] yzs[k]=x[k]h[k]=3ku[k](22k1)u[k]

  3. 分步计算卷积和
    y z s [ k ] = 3 k u [ k ] ∗ 2 ⋅ 2 k u [ k ] − 3 k u [ k ] ∗ u [ k ] y_{zs}[k] = 3^k u[k] * 2 \cdot 2^k u[k] - 3^k u[k] * u[k] yzs[k]=3ku[k]22ku[k]3ku[k]u[k]

    第一项: 3 k u [ k ] ∗ 2 ⋅ 2 k u [ k ] 3^k u[k] * 2 \cdot 2^k u[k] 3ku[k]22ku[k]

    利用公式:
    α k u [ k ] ∗ β k u [ k ] = β k + 1 − α k + 1 β − α u [ k ] \alpha^k u[k] * \beta^k u[k] = \frac{\beta^{k+1} - \alpha^{k+1}}{\beta - \alpha} u[k] αku[k]βku[k]=βαβk+1αk+1u[k]
    代入 α = 3 \alpha = 3 α=3 β = 2 \beta = 2 β=2,得到:
    3 k u [ k ] ∗ 2 k u [ k ] = 2 k + 1 − 3 k + 1 2 − 3 u [ k ] = 2 k + 1 − 3 k + 1 − 1 u [ k ] = − ( 2 k + 1 − 3 k + 1 ) u [ k ] 3^k u[k] * 2^k u[k] = \frac{2^{k+1} - 3^{k+1}}{2 - 3} u[k] = \frac{2^{k+1} - 3^{k+1}}{-1} u[k] = -(2^{k+1} - 3^{k+1}) u[k] 3ku[k]2ku[k]=232k+13k+1u[k]=12k+13k+1u[k]=(2k+13k+1)u[k]

    第二项: 3 k u [ k ] ∗ u [ k ] 3^k u[k] * u[k] 3ku[k]u[k]
    ∑ n = 0 k 3 n = 3 k + 1 − 1 3 − 1 = 3 k + 1 − 1 2 \sum_{n=0}^{k} 3^n = \frac{3^{k+1} - 1}{3 - 1} = \frac{3^{k+1} - 1}{2} n=0k3n=313k+11=23k+11

  4. 综合计算结果
    y z s [ k ] = 2 ⋅ − ( 2 k + 1 − 3 k + 1 ) u [ k ] − 3 k + 1 − 1 2 u [ k ] y_{zs}[k] = 2 \cdot -(2^{k+1} - 3^{k+1}) u[k] - \frac{3^{k+1} - 1}{2} u[k] yzs[k]=2(2k+13k+1)u[k]23k+11u[k]
    化简得到:
    y z s [ k ] = ( 9 2 3 k − 4 ⋅ 2 k + 1 2 ) u [ k ] y_{zs}[k] = \left( \frac{9}{2} 3^k - 4 \cdot 2^k + \frac{1}{2} \right) u[k] yzs[k]=(293k42k+21)u[k]

结论

  1. 卷积的定义和公式:理解卷积的数学表达式和物理意义。
  2. 卷积的计算步骤:信号翻转、信号平移、信号相乘并求和。
  3. 卷积和的应用:通过具体例题计算系统的零状态响应。
  4. 公式推导和简化:利用已知公式推导卷积和,进行数学化简得到最终结果。
参考资源链接:[《信号系统》知识点总结.pdf](https://wenku.csdn.net/doc/6412b762be7fbd1778d4a1a2?utm_source=wenku_answer2doc_content) 理解卷积运算是信号系统考研复习中的一个重要环节。卷积运算在系统分析中有着广泛的应用,它是分析线性时不变系统(LTI)输出信号输入信号关系的关键数学工具。要掌握卷积运算,首先需要明白卷积的定义:对于两个时间函数x(t)h(t),它们的卷积定义为: (x * h)(t) = ∫ x(τ)h(t - τ)dτ 这个积分表达了在不同时间点上输入信号x(t)系统响应h(t)的叠加效果。理解了定义后,接下来要掌握卷积的性质,包括交换律、结合律分配律,这些性质在解决复杂问题时能够简化计算。 卷积运算在系统分析中的应用主要体现在以下几个方面: 1. 确定系统的输出:给定一个输入信号x(t)系统的冲激响应h(t),通过卷积运算可以得到系统的输出信号y(t)。 2. 系统的线性特性:利用卷积运算可以证明LTI系统的线性特性,即系统的叠加原理。 3. 系统的时域频域特性:卷积运算傅里叶变换紧密相关,通过卷积定理,可以在频域内简化卷积运算,进而分析系统的频率响应特性。 在实际操作中,对于连续时间信号,卷积运算往往需要通过图形方法、数值积分或者利用卷积定理结合傅里叶变换来计算。对于离散时间信号,卷积运算可以通过卷积公式直接计算,或使用Z变换在复频域内进行。 华科信号系统考研复习时,建议结合《信号系统》考研笔记及知识点,深入理解卷积的概念,并通过实际例题来加强应用能力。这份《信号系统》知识点总结.pdf资料能够帮助你系统地学习回顾相关的概念定理,从而在考试中准确地分析解答卷积相关的问题。 参考资源链接:[《信号系统》知识点总结.pdf](https://wenku.csdn.net/doc/6412b762be7fbd1778d4a1a2?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值