1. 卷积的定义
卷积是两个信号(或函数)之间的一种数学运算,其目的是通过两个信号的结合,生成一个新的信号。离散时间信号的卷积定义为:
y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k] y[n]=x[n]∗h[n]=k=−∞∑∞x[k]h[n−k]
其中, x[n] 是输入信号, h[n] 是系统的冲激响应,y[n] 是输出信号。
2. 卷积和的计算步骤
卷积和的计算步骤如下:
- 信号翻转:将一个信号进行时间翻转。例如,将 h[n] 翻转为 h[-n] 。
- 信号平移:将翻转后的信号进行平移,形成 h[n - k] 。
- 信号相乘并求和:在每个时间点 n ,计算 x[k] 和 h[n - k] 的乘积,然后对所有 k 求和。
3. 例题解析
已知条件:
- 系统的差分方程为:
y [ k ] − 3 y [ k − 1 ] + 2 y [ k − 2 ] = x [ k ] y[k] - 3y[k-1] + 2y[k-2] = x[k] y[k]−3y[k−1]+2y[k−2]=x[k] - 激励信号:
x [ k ] = 3 k u [ k ] x[k] = 3^k u[k] x[k]=3ku[k] - 初始状态:
y [ − 1 ] = 3 , y [ − 2 ] = 1 y[-1] = 3, \, y[-2] = 1 y[−1]=3,y[−2]=1
要求系统的零状态响应 y z s [ k ] y_{zs}[k] yzs[k]。
步骤如下:
-
求单位冲激响应 h [ k ] h[k] h[k]:
求解系统的差分方程,假设单位冲激响应 h [ k ] = ( 2 ⋅ 2 k − 1 ) u [ k ] h[k] = (2 \cdot 2^k - 1) u[k] h[k]=(2⋅2k−1)u[k]。 -
计算卷积和 y z s [ k ] y_{zs}[k] yzs[k]:
y z s [ k ] = x [ k ] ∗ h [ k ] = 3 k u [ k ] ∗ ( 2 ⋅ 2 k − 1 ) u [ k ] y_{zs}[k] = x[k] * h[k] = 3^k u[k] * (2 \cdot 2^k - 1) u[k] yzs[k]=x[k]∗h[k]=3ku[k]∗(2⋅2k−1)u[k] -
分步计算卷积和:
y z s [ k ] = 3 k u [ k ] ∗ 2 ⋅ 2 k u [ k ] − 3 k u [ k ] ∗ u [ k ] y_{zs}[k] = 3^k u[k] * 2 \cdot 2^k u[k] - 3^k u[k] * u[k] yzs[k]=3ku[k]∗2⋅2ku[k]−3ku[k]∗u[k]第一项: 3 k u [ k ] ∗ 2 ⋅ 2 k u [ k ] 3^k u[k] * 2 \cdot 2^k u[k] 3ku[k]∗2⋅2ku[k]
利用公式:
α k u [ k ] ∗ β k u [ k ] = β k + 1 − α k + 1 β − α u [ k ] \alpha^k u[k] * \beta^k u[k] = \frac{\beta^{k+1} - \alpha^{k+1}}{\beta - \alpha} u[k] αku[k]∗βku[k]=β−αβk+1−αk+1u[k]
代入 α = 3 \alpha = 3 α=3 和 β = 2 \beta = 2 β=2,得到:
3 k u [ k ] ∗ 2 k u [ k ] = 2 k + 1 − 3 k + 1 2 − 3 u [ k ] = 2 k + 1 − 3 k + 1 − 1 u [ k ] = − ( 2 k + 1 − 3 k + 1 ) u [ k ] 3^k u[k] * 2^k u[k] = \frac{2^{k+1} - 3^{k+1}}{2 - 3} u[k] = \frac{2^{k+1} - 3^{k+1}}{-1} u[k] = -(2^{k+1} - 3^{k+1}) u[k] 3ku[k]∗2ku[k]=2−32k+1−3k+1u[k]=−12k+1−3k+1u[k]=−(2k+1−3k+1)u[k]第二项: 3 k u [ k ] ∗ u [ k ] 3^k u[k] * u[k] 3ku[k]∗u[k]
∑ n = 0 k 3 n = 3 k + 1 − 1 3 − 1 = 3 k + 1 − 1 2 \sum_{n=0}^{k} 3^n = \frac{3^{k+1} - 1}{3 - 1} = \frac{3^{k+1} - 1}{2} n=0∑k3n=3−13k+1−1=23k+1−1 -
综合计算结果:
y z s [ k ] = 2 ⋅ − ( 2 k + 1 − 3 k + 1 ) u [ k ] − 3 k + 1 − 1 2 u [ k ] y_{zs}[k] = 2 \cdot -(2^{k+1} - 3^{k+1}) u[k] - \frac{3^{k+1} - 1}{2} u[k] yzs[k]=2⋅−(2k+1−3k+1)u[k]−23k+1−1u[k]
化简得到:
y z s [ k ] = ( 9 2 3 k − 4 ⋅ 2 k + 1 2 ) u [ k ] y_{zs}[k] = \left( \frac{9}{2} 3^k - 4 \cdot 2^k + \frac{1}{2} \right) u[k] yzs[k]=(293k−4⋅2k+21)u[k]
结论
- 卷积的定义和公式:理解卷积的数学表达式和物理意义。
- 卷积的计算步骤:信号翻转、信号平移、信号相乘并求和。
- 卷积和的应用:通过具体例题计算系统的零状态响应。
- 公式推导和简化:利用已知公式推导卷积和,进行数学化简得到最终结果。