这是对三种常见统计分布的总结,分别是卡方分布、t分布和F分布。以下是每种分布的详细介绍:
1. 卡方分布
- 分布形式: X = X 1 2 + X 2 2 + ⋯ + X n 2 X = X_1^2 + X_2^2 + \cdots + X_n^2 X=X12+X22+⋯+Xn2,其中 X i ∼ N ( 0 , 1 ) X_i \sim N(0,1) Xi∼N(0,1) 独立
- 密度图形:呈现右偏的分布曲线
- 上 alpha 分位点: χ α 2 ( n ) \chi^2_{\alpha}(n) χα2(n)
2. t分布
- 分布形式: X = X 1 X 2 n ∼ t ( n ) X = \frac{X_1}{\sqrt{\frac{X_2}{n}}} \sim t(n) X=nX2X1∼t(n),其中 X 1 ∼ N ( 0 , 1 ) X_1 \sim N(0,1) X1∼N(0,1), X 2 ∼ χ 2 ( n ) X_2 \sim \chi^2(n) X2∼χ2(n) 独立
- 密度图形:呈现稍微右偏的分布曲线
- 上 \alpha 分位点: t α ( n ) t_{\alpha}(n) tα(n)
3. F分布
- 分布形式: X = X 1 m X 2 n ∼ F ( m , n ) X = \frac{\frac{X_1}{m}}{\frac{X_2}{n}} \sim F(m, n) X=nX2mX1∼F(m,n),其中 X 1 ∼ χ 2 ( m ) X_1 \sim \chi^2(m) X1∼χ2(m), X 2 ∼ χ 2 ( n ) X_2 \sim \chi^2(n) X2∼χ2(n) 独立
- 密度图形:呈现右偏的分布曲线
- 上 \alpha 分位点: F α ( m , n ) F_{\alpha}(m, n) Fα(m,n)