在拉普拉斯变换中,函数及其导数的变换性质非常重要,尤其是在处理微分方程时。下面是常见的函数导数的拉普拉斯变换性质:
一阶导数的拉普拉斯变换
对于函数 ( y(t) ),其一阶导数 ( y’(t) ) 的拉普拉斯变换为:
L { y ′ ( t ) } = s Y ( s ) − y ( 0 ) \mathcal{L}\{y'(t)\} = sY(s) - y(0) L{
y′(t)}=sY(s)−y(0)
其中 ( Y(s) ) 是 ( y(t) ) 的拉普拉斯变换,( y(0) ) 是 ( y(t) ) 在 ( t=0 ) 时的初值。
二阶导数的拉普拉斯变换
对于函数 ( y(t) ),其二阶导数 ( y’‘(t) ) 的拉普拉斯变换为:
L { y ′ ′ ( t ) } = s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) \mathcal{L}\{y''(t)\} = s^2Y(s) - sy(0) - y'(0) L{
y′′(t)}=s2Y(s)−sy(0)−y′(0)
其中 ( Y(s) ) 是 ( y(t) ) 的拉普拉斯变换,( y(0) ) 是 ( y(t) ) 在 ( t=0 ) 时的初值,( y’(0) ) 是 ( y’(t) ) 在 ( t=0 ) 时的初值。
高阶导数的拉普拉斯变换
一般地,对于函数 ( y(t) ) 的 ( n ) 阶导数 ( y^{(n)}(t) ),其拉普拉斯变换为:
L { y ( n ) ( t ) } = s n Y ( s ) − s n − 1 y ( 0 ) − s n − 2 y ′ ( 0 ) − ⋯ − y ( n − 1 ) ( 0 ) \mathcal{L}\{y^{(n)}(t)\} = s^nY(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \cdots - y^{(n-1)}(0) L{
y(n)(t)}=snY(s)−sn−1y(0)−sn−2y′(0)