1. 连续信号的能量公式推导
首先,我们考虑一个电阻为 1 的电阻上的损耗功率。假设电压为 u(t),我们可以用 f(t) 来表示:
能量公式:
E = ∫[-∞, ∞] |f(t)|² dt
2. 平均功率公式
对于周期为 T 的信号,我们通常关注其平均功率:
平均功率公式:
P = lim(T→∞) [1/T * ∫[-T/2, T/2] |f(t)|² dt]
这个公式计算了信号在一个周期内的平均功率,并取极限以适用于非周期信号。
3. 能量有限信号与功率有限信号
根据能量和功率的公式,我们可以区分两种类型的信号:
- 能量有限信号: 如果信号的总能量 E 是有限的 (E < ∞),则平均功率 P 趋近于 0 (P = 0)。
- 功率有限信号: 如果信号的平均功率 P 是有限的 (P < ∞),则总能量 E 趋近于无穷大 (E = ∞)。 这类信号通常引入平均功率的概念来区分。
4. 离散信号的能量与功率
对于离散信号 f(k),我们有类似的定义:
- 能量:
E = ∑[-∞, ∞] |f(k)|²
- 功率:
P = lim(N→∞) [1/N * ∑[-N/2, N/2] |f(k)|²]
5. 拓展结论
基于以上定义,我们可以得出一些重要的结论:
- 时限信号: 只在有限时间区间内不为零的信号是能量信号。
- 周期信号: 周期信号通常属于功率信号。
- 非周期信号: 非周期信号可以是能量信号,也可以是功率信号。
- f(t) = et, 不是能量信号也不是功率信号。
6.既不是能量信号也不是功率信号的信号
有些信号既不属于能量信号,也不属于功率信号。一个例子是 f(t) = e^t
,它的能量和功率都趋于无穷大。
7.因果信号
- 因果信号: t=0之前,信号值为0.
8.信号的分类
信号可以根据不同的特性进行分类:
- 维度: 一维信号、多维信号
- 数值类型: 实信号、复信号