X-Anylabeling

X-AnyLabeling是一个强大的AI辅助标注工具,支持GPU加速、图像/视频处理、多种任务预测和自定义模型。文章详细介绍了如何安装、使用自定义模型,并提供了相关文档链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、X-Anylabeling

关键功能

  • 支持GPU推理加速;
  • 支持图像和视频处理;
  • 支持单帧和批量预测所有任务;
  • 支持自定义模型和二次开发设计;
  • 支持一键导入和导出主流的标签格式,如COCO\VOC\YOLO\DOTA\MOT\MASK;
  • 支持多种图像标注样式,包括 多边形、矩形、旋转框、圆形、线条、点,以及 文本检测、识别 和 KIE 标注;
  • 支持各类视觉任务,如图像分类、目标检测、实例分割、姿态估计、旋转检测、多目标跟踪、光学字符识别、图像文本描述、车道线检测、分割一切系列等。

1.1 源码安装X-Anylabeling

参考地址:自动标注软件X-AnyLabeling的使用教程及一些问题的记录-CSDN博客

conda虚拟环境配置

  1. 从源码安装:GitHub - CVHub520/X-AnyLabeling: Effortless data labeling with AI support from Segment Anything and other awesome models.
  2. 在项目中打开终端安装所需的环境依赖:

pip install -r requirements.txt

  1. 安装完成后运行app.py

python anylabeling/app.py

1.2 X-Anylabeling的使用

1.2.1使用自定义的模型

|- custom_model

| |- fruits.onnx

| |- yolov5s.yaml

  • yaml文件的内容。

type字段的值参考:https://github.com/CVHub520/X-AnyLabeling/blob/v2.1.0/anylabeling/services/auto_labeling/model_manager.py

type: yolov5  #网络类型定义,目前已适配的网络类型定义可参见 model_manager.py 文件中的 load_custom_model() 函数;
name: yolov5s-r20230520  # 如果是加载用户自定义模型,此字段可忽略
display_name: Fruits (YOLOv5s)  #展示到界面上显示的名称,可根据自定义任务自行命名
model_path: fruits.onnx    # 相对于自定义配置文件 *.yaml 所对应的模型权重路径,要求是 *.onnx 文件格式
input_width: 640
input_height: 640
nms_threshold: 0.45
confidence_threshold: 0.45
classes:
  - apple
  - banana
  - orange

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值