供应链|Managemeng Science 论文解读:数据驱动下联合定价和库存控制的近似方法 (一)

在这里插入图片描述

编者按

本次解读的文章发表于 Management Science,原文信息:Hanzhang Qin, David Simchi-Levi, Li Wang (2022) Data-Driven Approximation Schemes for Joint Pricing and Inventory Control Models. https://doi.org/10.1287/mnsc.2021.4212

文章在数据驱动的前提下,研究经典的多周期联合定价和库存控制问题。 在此问题中,零售商定期决定其希望销售的产品的价格和库存水平,其目标是通过将库存水平与随机需求(取决于每个时期的价格)相匹配,在有限的范围内最大化预期利润。

鉴于需求函数或随机噪声分布很难准确掌握完整信息,而过去的需求数据相对容易收集,文章假设零售商对噪声分布或真实的需求函数未知,但假设其可以访问需求假设集,并且真实需求函数可以由需求假设集中候选函数的非负组合表示,或者真实需求函数是广义线性的。基于此,文章提出了一种基于数据驱动的近似算法,使用预先收集的需求数据来解决联合定价和库存控制问题,同时证明了算法的样本复杂度界限。在数值研究中,文章演示了如何从数据构建需求假设集,并验证了所提出的数据驱动算法对动态问题的有效性,其结果显著改善了与基准算法相比的最优性差距。

1 问题介绍

联合定价和库存控制问题以其要求协调定价和库存决策的困难,一直是商业管理中的核心问题之一。大多公司更倾向于跨部门做出独立决策,因此同时考虑定价和库存为公司提供了将其销售和运营活动关联起来的机会。而定价和库存决策的结合更有助于公司提高利润:较高的价格弥补了低库存水平,有助于避免高库存积压量,而较低的价格则加速高库存水平的消耗,降低库存持有成本。 然而,这个问题在理论上和实践中都很难解决,尤其当随机需求的确切形式未知时。

在文章中,作者们研究了数据驱动环境下的多周期联合定价和库存控制问题。 具体来说,文章假设销售单一商品的零售商定期对商品的定价和库存策略做出决策,这直接影响获得的收入和产生的成本。 零售商的目标是通过将库存水平与随机需求(取决于每个时期的价格)相匹配,在多个时期的有限计划范围内最大化总利润(总收入减去总成本)。

在运营管理研究界,该文章前的大多数文献关于此问题的研究基本均假设:零售商确切地知道需求和价格之间的函数依赖性(需求函数)以及需求中的随机噪声分布(噪声分布),即全信息问题。 然而在实践中,需求函数和噪声分布通常并不准确,或者过于复杂而难以处理,而过去的销售数据相对容易收集,即在数据驱动的环境中的此被定义为数据驱动问题。

2 联合定价和库存控制模型

如上所述,文章考虑销售单一商品的零售商,并在 T T T期内定期决定该商品的定价和库存策略。 在每个周期 t ∈ [ 1 , … , T ] t\in[1,\ldots,T] t[1,,T] 开始时,库存水平为 x t x_t xt,零售商做出两个决策:单位售价 p t ∈ [ p t min ⁡ , p t max ⁡ ] p_t\in[p_t^{\min},p_t^{\max}] pt[ptmin,ptmax] 和库存水平 y t ≥ x t y_t\geq x_t ytxt. 假设交货时间 (lead time) 为零,则零售商立即收到 y t − x t ≥ 0 y_t-x_t\geq 0 ytxt0大小的补货。 在每个周期结束时,零售商满足非负随机需求。

假设1:在每个时期 t ∈ [ 1 , … , T ] t\in[1,\ldots,T] t[1,,T]中,随机需求为 D t ( p t ) + η t D_t(p_t)+\eta_t Dt(pt)+ηt,其中 D ( ⋅ ) D(\cdot) D()是确定性需求期望函数,而 η t \eta_t ηt是在 [ ω t min ⁡ , ω t max ⁡ ] [\omega_t^{\min},\omega_t^{\max}] [ωtmin,ωtmax]上有界的零均值连续随机变量,且在时间上独立。 η t \eta_t ηt的累积分布函数是 Lipschitz 连续的,常数为 I t I_t It.

假设 1 中定义的随机需求的形式称为加性需求函数(Chen 和 Simchi-Levi 2004),其随机性会加性地影响需求。 剩余库存水平 y t − D t ( p t ) − η t y_t-D_t(p_t)-\eta_t ytDt(pt)ηt结转到下一个时期并成为其起始库存水平 x t + 1 x_{t+1} xt+1;若剩余库存水平为负,则零售商积压 (backlog) 所有未满足的需求。

零售商对实现的每个需求单位获得 p t p_t pt的单位收益,从而在 t t t期间收到 p t D t ( p t ) p_tD_t(p_t) ptDt(pt)的预期收益。 零售商为每次补货单位支付 c t ≥ 0 c_t\geq 0 ct0的单位订购成本。 在每个时期结束时,每单位正剩余库存会产生 h ≥ 0 h\geq 0 h0的持有成本,而每单位负剩余库存会产生 b t ≥ 0 b_t\geq 0 bt0的积压成本。因此, t t t期间的预期成本为
c t ( y t − x t ) + E η t [ h t ( y t − D t ( p t ) − η t ) + + b t ( D t ( p t ) + η t − y t ) + ] c_t(y_t-x_t)+\mathbb{E}_{\eta_t}[h_t(y_t-D_t(p_t)-\eta_t)^+ + b_t(D_t(p_t)+\eta_t-y_t)^+] ct(ytxt)+Eηt[ht(ytDt(pt)ηt)++bt(Dt(pt)+ηtyt)+]

假设单位订购成本为零,则 t t t期间的预期利润为
p t D t ( p t ) − C t ( y t − D t ( p t ) ) p_tD_t(p_t)-C_t(y_t-D_t(p_t)) ptDt(pt)Ct(ytDt(pt))

其中 C t ( q t ) : = E η t [ h t ( q t − η t ) + + b t ( η t − q t ) + ] C_t(q_t):=\mathbb{E}_{\eta_t}[h_t(q_t-\eta_t)^+ + b_t(\eta_t-q_t)^+] Ct(qt):=Eηt[ht(qtηt)++bt(ηtqt)+].

假设 2. 在每个时期 t ∈ [ 1 , … , T ] t\in[1,\ldots,T] t[1,,T]中, D t ( ⋅ ) D_t(\cdot) Dt()的反函数 D t − 1 ( ⋅ ) D_t^{-1}(\cdot) D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值