博客与论文原文
论文:Qi, W., Zhang, Y., & Zhang, N. (2023). Scaling up electric-vehicle battery swapping services in cities: A joint location and repairable-inventory model. Management Science, 69(11), 6855-6875.
编者按:
2023年10月16日,运筹学与管理科学学会(The Institute for Operations Research and the Management Sciences,INFORMS)年会公布了交通科学和物流(Transportation Science and Logistics,TSL)领域的各项获奖。清华大学祁炜副教授、 张玉利特别研究员及其指导的博士生张宁威提交的论文“Scaling Up Electric-Vehicle Battery Swapping Services in Cities: A Joint Location and Repairable-Inventory Model”获得最佳论文奖(TSL Best Paper Award)。其中张玉利为论文通讯作者和共同第一作者。
引言
过去的十年里,电动汽车的换电服务并不像电动汽车行业发展的那么顺利。作为电车充电服务的替代,电池换电服务通过将汽车中耗尽的电池更换为充好电的电池。但早期的换电公司面临客户不足的问题,在客户较少的情况下使用换电服务会导致巨大的前期投资。随着电动汽车的发展,换电服务重新兴起,相比于充电,换电服务有以下三个优点:
- 快速:换电只需要三到五分钟,然而目前的充电桩充满需要半小时左右;
- 紧凑:换电服务站相比于充电站占用空间会更小;
- 安全:相比于用户维护,换电的电池是服务供应商来维护。
因此换电服务在大城市具备较好的前景。然而当服务商在大城市拓展换电业务时会面临最新挑战: - 服务距离:密集的部署换电服务网络可以减少用户的额外路程,但会导致运行调度起来异常困难;
- 电池性能:相比于集中式的需求,分布式换电站的需求波动性更大,因此换电站需要大量的电池库存储备;
- 电网适配:末端配电网通常没有考虑大规模充电需求,因此导致部分区域只能用低压充电。
针对上述挑战,本文通过对“集中充电,分布换电”的服务网络从数据、建模和求解算法层面进行分析,探索该服务设施在城市的可用性。
一、模型概述
下图展示了城市“集中充电-分布换电”的服务网络结构,每个网络中都有多个分布式换电站和一个集中充电站,集中充电站必须配置在配电网容量重组的地方,通常为10kV或更高。分布式换电站会服务随机到达的电池耗尽的车辆,并用充满电的电池替代。
集中充电-分布换电的服务网络
换电服务提供商的主要目标是最小化设施投资成本和运行成本。目前发展阶段分布式换电站通常与加油站位置接近,优化用户的服务距离,但服务换电站的集中式充电站通常需要进行最优选址,除此之外服务提供商仍需要优化电池的使用循环。
为了更真实的描述需求到达的随机过程,本文使用国家系能源汽车监管中心(NMMC-NEV)的数据,包括车辆id,时间戳,电池SOC以及位置等数据。与大多数文献不同,本文假设换电需求的到达未必满足泊松过程,会在后续章节详细描述。
二、“分布式换电-集中充电”策略
首先对单个充电网络进行建模,具体包括一个位于 h ∈ H h \in \mathcal{H} h∈H 的充电站,用于服务换电站集合 其中 H \mathcal{H} H 表示可行的充电站选址集合, I ⊇ I h \mathcal{I} \supseteq \mathcal{I}_h I⊇Ih 表示所有的换电站。特别的,本文测试了电池的交换、充电、存储和循环,每个换电站采用 ( r , Q ) (r,Q) (r,Q) 策略来补充充满电的电池库存。具体的,一旦位置 i i i 的换电站的库存下降到 r i r_i ri ,该换变电站就会调度卡车将 Q i Q_i Qi 个耗尽的电池送去集中式充电站,并从换电站取出 Q i Q_i Qi 个充满电的电池,如果充电站没有则会出现缺货。假设充电站最初存储的充电电池数量为 R R R ,本模型的目标是确定 R , Q i , r i R, Q_i, r_i R,Qi,ri。
使用 { { N i S ( t ) ; t ≥ 0 } \{N_i^S(t) ; t \geq 0\} {NiS(t);t≥0}} 表示电动汽车到达换电站 i i i 到时间 t t t 的到达过程。均值 $\mu_i 和方差 和方差 和方差 \sigma_i^2$ 可以从数据中进行假设。每次卡车需要耗费时间 T i h T T_{ih}^T TihT,完整的充电需要耗费 T C T^C TC 时间。该模型不会将没充满的电池换给客户。
充电站的调度基础模型
首先决策充电站的库存水平 R R R,为此引入电池的累计未满足量 D i ( t ) D_i(t) Di(t)。,代表 n i E ( t ) n_i^E(t) niE(t) 和 n i I ( t ) n_i^I(t) niI(t) 的差,上述变量分别代表累计到时间 t t t 换电站 i i i 的累计电池需求数量和实际发送给充电站并充好电的电池数量。可以看作是换电站送出和收到的电池数量。 s i ( t ) s_i(t) si(t) 代表换电站的上一次与充电找运输订单的时间, k i ( t ) k_i(t) ki(t) 代表换电站已经运输的次数。该过程遵守 $N^S_i(s_i(t))=k_i(t)Q_i,k_i(t)\in \mathbb{N}_+ $,因此我们可以描述 t t t 时刻之前电池的总消耗数目 n i E ( t ) = k i ( t ) Q i = N i S ( s i ( t ) ) n_i^E(t)=k_i(t) Q_i=N_i^S\left(s_i(t)\right) niE(t)=ki(t)Qi=NiS(si(t)) ,用 Δ i = T i T + T C \Delta_i=T_i^T+T^C Δi=TiT+TC 代表充电和运输时间, 作为有效充电时间。 n i I ( t ) = N i S ( s i ( t − Δ i ) ) n_i^I(t)=N_i^S\left(s_i\left(t-\Delta_i\right)\right) niI(t)=NiS(si(t−Δi)) 代表换电站t时间之前收到的电池数目。
因此电池未满足量 D i ( t ) = n i E ( t ) − n i I ( t ) D_i(t)= n_i^E(t)- n_i^I(t) Di(t)=niE(t)−niI(t) 有以下性质:
- 对于任意 t t t, l i m D i ( t ) → 0 D i ( t ) = 0 lim_{D_i(t)\rightarrow 0} D_i(t)=0 limDi(t)→0Di(t)=0
- 对于任意 t t t, D i ( t ) > 0 D_i(t) > 0 Di(t)>0
- 如果所有换电站均 D i ( t ) = 0 D_i(t) = 0 Di(t)=0 ,充电站保存着 R R R 个充满电的电池
充电站与网络中的所有换电共享电池库存。为了表示充电站的服务质量要求,如果 ∑ i ∈ I h D i ( t ) \sum_ {i \in \mathcal{I}_ h}D_ i(t) ∑i∈IhDi(t) 小于等于 R R R ,目前充电站仍有剩余至少 Q i Q_ i Qi 个电池可以使用。反之,则会出现订单延期。因此我们可以用 ( ∑ i ∈ I h D i ( t ) − R ) + (\sum_ {i \in \mathcal{I}_ h} D_i(t) - R)^+ (∑i∈IhDi(t)−R)+ 来衡量订单延迟水平,假设服务运营商强制规定订单延期的比例必须少于 ϵ C \epsilon ^C ϵC 。因此在服务运营的稳态下缺货意味着 ∑ i ∈ I h D i ( t ) > R \sum_ {i \in \mathcal{I}_ h} D_ i(t) > R ∑i∈IhDi(t)>R 的概率应当小于 ϵ C \epsilon ^C ϵC:
lim t → ∞ Prob ( ∑ i ∈ I h D i ( t ) > R ) < ϵ C \lim _{t \rightarrow \infty} \operatorname{Prob}\left(\sum_{i \in \mathcal{I}_h} D_i(t)>R\right)<\epsilon^C t→∞limProb(i∈Ih∑Di(t)>R)<ϵC
我们假设不同换电站之间的电池未满足量相互独立。具体的:1. 换电站电池为满足量是由于换电需求到达的随机过程 N i S ( t ) N_ i^S(t) NiS(t) 引起的,该随机过程满足参数 r i , Q i , T i T , T C r_ i, Q_ i, T_ i^T, T^C ri,Qi,TiT,TC。2.假设不同换电站的换电需求相互独立,同时服务质量要求也是外部因素给定的。3.每个换电站独立的遵守 ( r , Q ) (r,Q) (r,Q) 策略。因此分析单个换电站的策略就足够了。文中的部分符号在下图中进行展示。
(r,Q)策略下的换电站库存位置和可用库存水平
除了基础的运行模型,文中还介绍了充电站运行的重要指标,具体包括:电池未满足量的均值模型,电池未满足量的方差模型,电池库存水平。
随机的充电时间
为了描述有效充电时间的随机性,现需要重新分析单个换电站引起的电池未满足量 D ( t ) D(t) D(t) 。假设有效充电时间 Δ = T T + T C \Delta = T^T + T^C Δ=TT+TC 是通过一下离散分布构成:
Prob ( Δ = Δ l ) = p l , ∀ l ∈ L , \operatorname{Prob}\left(\Delta=\Delta_l\right)=p_l, \quad \forall l \in \mathcal{L}, Prob(Δ=Δl)=pl,∀l∈L,
其中
L
\mathcal{L}
L 是有限的索引集合,将充电站的充电队列表示为
G
I
Q
/
D
R
/
+
∞
GI_ Q/DR/+\infty
GIQ/DR/+∞ 其中
G
I
Q
GI_ Q
GIQ 表示电池到达充电站的过程,每次到达的数量是
Q
Q
Q,
D
R
DR
DR 代表有效充电时间,批次内不同电池以及不同批次之间均满足离散概率分布下的独立同分布要求。
如图所示,
G
I
Q
/
D
R
/
+
∞
GI_ Q/DR/+\infty
GIQ/DR/+∞ 的队列可以分解为
L
\mathbb{L}
L 个子队列,子队列表示为
G
I
O
U
l
/
Δ
l
/
+
∞
G I_O^{U^l} / \Delta_l /+\infty
GIOUl/Δl/+∞ 其中
U
l
U^l
Ul 是该批次中需要确定随机的有效充电时间的电池数目。
U
l
U^l
Ul 满足二项分布
B
(
Q
,
p
l
)
B(Q,p_l)
B(Q,pl)。
在有效充电时间随机的情况下将充电站的
G
I
Q
/
D
R
/
+
∞
GI_ Q/DR/+\infty
GIQ/DR/+∞队列分解为三个子队列
除了随机有效充电时间的基础模型和定义,文章还对电池未满足量的均值和方差进行了推导和扩展。
换电站的调度基础模型
分布式换电站在向集中充电站请求 Q Q Q 个电池的途中可能耗尽库存的电池,由于充电站订单可能延期,订单的等待的时间包括了固定的运输时间 T T T^T TT 和随机的阻碍时间 T D T^D TD 。确定 ( r , Q ) (r,Q) (r,Q) 模型中换电站的请求点 r r r ,假设服务提供商可以容忍的订单延期概率最大为 ϵ S \epsilon^S ϵS,则请求点 r r r 满足如下:
Prob ( N S ( T T + T D ) ≥ r + 1 ) ≤ ϵ S \operatorname{Prob}\left(N^S\left(T^T+T^D\right) \geq r+1\right) \leq \epsilon^S Prob(NS(TT+TD)≥r+1)≤ϵS
但是其中 T D T^D TD 的分布很难衡量,因为 T D T^D TD 取决于库存 R , r i , Q i R, r_ i, Q_ i R,ri,Qi 的取值,因此需要分两步来获得 r r r 的取值。第一步不考虑 T D T^D TD 。如果我们假设 N S ( T T ) N^S(T^T) NS(TT) 的分布是满足均值 T T μ T^T \mu TTμ 方差 T T σ 2 T^T \sigma^2 TTσ2 的正态分布,会有如下结论:
r ≥ T T μ − 1 + Φ − 1 ( 1 − ϵ S ) T T σ r \geq T^T \mu-1+\Phi^{-1}\left(1-\epsilon^S\right) \sqrt{T^T} \sigma r≥TTμ−1+Φ−1(1−ϵS)TTσ
该结果可以让 r r r 的取值与决策变量独立,并且可以将该表达式集成到基础设施的设计规划问题中。但是忽略了 T D T^D TD 会导致 r r r 被过低的评估,因此在第二部中通过求解优化问题并进一步通过期望 E [ T D ] \mathbb{E}[T^D] E[TD] 估计随机的延迟时间 T D T^D TD 。为了计算期望,我们可以把充电站假设为一个排队系统:换电站的订单到达意味着顾客到达,充电站的电池发送意味着服务完成,因此 E [ T D ] \mathbb{E}[T^D] E[TD] 就是订单延迟水平 ( ∑ i ∈ I h D i ( t ) − R ) + (\sum_ {i \in \mathcal{I}_ h} D_ i(t) - R)^+ (∑i∈IhDi(t)−R)+ 的期望。这一数值可以通过优化问题进行计算,最终每个换电站的 $r_ i $可以计算为:
r i = ⌈ ( T i T + E [ T D ] ) μ − 1 + Φ − 1 ( 1 − ϵ S ) T i T + E [ T D ] σ i ⌉ r_i=\left\lceil\left(T_i^T+\mathbb{E}\left[T^D\right]\right) \mu-1+\Phi^{-1}\left(1-\epsilon^S\right) \sqrt{T_ i^T+\mathbb{E}\left[T^D\right]} \sigma_ i\right\rceil ri=⌈(TiT+E[TD])μ−1+Φ−1(1−ϵS)TiT+E[TD]σi⌉
最后重复这个优化和计算的过程直到 r i r_ i ri 收敛。
换电站本地充电
现在很多换电站是电池在换电站继续宁本地充电,在这种条件下假设耗尽的电池从车辆换下来后立刻进行现场充电。原文中推导出了换电站库存的公式并对比了本地充电与集中充电的结构,并对比了这两种结构存在以下几方面的权衡:
- 聚集效应:类似于传统的库存模型,相比于分布式本地充电,集中充电可以让安全库存容量更低;
- 订单批量数目的影响:集中充电的最大的缺陷是换电站与充电站交换电池的订单需要额外的电池,因为额外的电池需要应对换电的需求外还需要保证安全的库存;
- 运输前置时间的影响:集中充电的另一个缺陷是电池的运输时间,电池的运输增加了订单循环的时间,因此增加了电池需求和安全库存容量;
在本文的算例中也说明了聚集效应的优势与订单打包和运输时间的劣势强相关。总的来说,集中充电业务会加重电池资产,这与传统的汇集业务思想相矛盾。这是因为,与传统的零售商店相比,分布换电与集中充电是独立的,因此不需要批量订购和运输前置时间。因此聚集效应本身的好处并不足以证明采取“集中充电,分布换电”结构的合理性,本文进行额外的算例进行证明了该结构在城市网络下的合理性。
三、城市级基础设施部署
本节通过对单个换电服务网络进行描述,提出了联合定位和可修复库存模型以及求解算法,研究换电服务网络在城市范围内的部署。首先介绍联合选址和维修库存模型。假设给定换电站选址集合 I \mathcal{I} I 和充电站的选址集合 H \mathcal{H} H 。决策变量包括是否使用站点 h h h 作为充电站, z h = 1 o r 0 z_ h = 1 or 0 zh=1or0 ,是否使用地址 i i i 作为 h h h 充电站所服务的换电站, y i h = 1 o r 0 y_ {ih}=1 or 0 yih=1or0,以及换电站与充电站之间电池批量运输的数目 Q i h > 0 Q_ {ih} > 0 Qih>0。
目标函数是包括基础设施折旧成本和电池运输成本在内的总摊销成本。 c C , c B c^C, c^B cC,cB 分别代表充电站和电池的折旧成本。总折旧成本可以表示为 ∑ h ∈ H c h C z h + c B ( ∑ i ∈ I ∑ h ∈ H ( r i h y i h + Q i h ) + ∑ h ∈ H R h ) \sum_{h \in \mathcal{H}} c_h^C z_h+c^B\left(\sum_{i \in \mathcal{I}} \sum_{h \in \mathcal{H}}\left(r_{i h} y_{i h}+Q_{i h}\right)+\sum_{h \in \mathcal{H}} R_h\right) ∑h∈HchCzh+cB(∑i∈I∑h∈H(rihyih+Qih)+∑h∈HRh)。参考前文的推导,换电站的订货点以及整个网络的电池库存可以分别表示为:
r i h = T i h T μ i − 1 + Φ − 1 ( 1 − ϵ i S ) T i h T σ i r_{i h}=T_{i h}^T \mu_i-1+\Phi^{-1}\left(1-\epsilon_i^S\right) \sqrt{T_{i h}^T} \sigma_i rih=TihTμi−1+Φ−1(1−ϵiS)TihTσi
R h = ∑ i ∈ I ( T i h T + T C ) μ i y i h + Φ − 1 ( 1 − ϵ h C ) ∑ i ∈ I y i h ϕ i h ( Q i h ) . R_h=\sum_{i \in \mathcal{I}}\left(T_{i h}^T+T^C\right) \mu_i y_{i h}+\Phi^{-1}\left(1-\epsilon_h^C\right) \sqrt{\sum_{i \in \mathcal{I}} y_{i h} \phi_{i h}\left(Q_{i h}\right)} . Rh=∑i∈I(TihT+TC)μiyih+Φ−1(1−ϵhC)∑i∈Iyihϕih(Qih).
相应的, 总成本可以通过以下形式描述
C
(
z
,
y
,
Q
)
=
∑
h
∈
H
c
h
C
z
h
+
c
B
(
∑
i
∈
I
∑
h
∈
H
(
r
i
h
y
i
h
+
Q
i
h
)
+
∑
h
∈
H
R
h
)
+
∑
i
∈
I
∑
h
∈
H
2
c
i
h
T
∑
t
∈
T
κ
t
μ
i
t
y
i
h
Q
i
h
=
∑
h
∈
H
c
h
C
z
h
+
∑
h
∈
H
∑
i
∈
I
α
i
h
y
i
h
+
∑
h
∈
H
∑
i
∈
I
(
c
B
Q
i
h
+
β
i
h
y
i
h
Q
i
h
)
+
∑
h
∈
H
γ
h
∑
i
∈
I
y
i
h
ϕ
i
h
(
Q
i
h
)
,
\begin{aligned} C(z, y, Q)= & \sum_{h \in \mathcal{H}} c_h^C z_h+c^B\left(\sum_{i \in \mathcal{I}} \sum_{h \in \mathcal{H}}\left(r_{i h} y_{i h}+Q_{i h}\right)+\sum_{h \in \mathcal{H}} R_h\right) \\ & +\sum_{i \in \mathcal{I}} \sum_{h \in \mathcal{H}} \frac{2 c_{i h}^T \sum_{t \in \mathcal{T}} \kappa_t \mu_{i t} y_{i h}}{Q_{i h}} \\ = & \sum_{h \in \mathcal{H}} c_h^C z_h+\sum_{h \in \mathcal{H}} \sum_{i \in \mathcal{I}} \alpha_{i h} y_{i h} \\ & +\sum_{h \in \mathcal{H}} \sum_{i \in \mathcal{I}}\left(c^B Q_{i h}+\frac{\beta_{i h} y_{i h}}{Q_{i h}}\right) \\ & +\sum_{h \in \mathcal{H}} \gamma_h \sqrt{\sum_{i \in \mathcal{I}} y_{i h} \phi_{i h}\left(Q_{i h}\right)}, \end{aligned}
C(z,y,Q)==h∈H∑chCzh+cB(i∈I∑h∈H∑(rihyih+Qih)+h∈H∑Rh)+i∈I∑h∈H∑Qih2cihT∑t∈Tκtμityihh∈H∑chCzh+h∈H∑i∈I∑αihyih+h∈H∑i∈I∑(cBQih+Qihβihyih)+h∈H∑γhi∈I∑yihϕih(Qih),
其中 $\alpha_{i h} \triangleq c^B\left(\left(2 T_{i h}T+TC\right) \mu_i-1+\Phi{-1}\left(1-\epsilon_iS\right) \sqrt{T_{i h}^T} \sigma_i\right), $ $ \beta_ {i h} \triangleq 2 c_ {h i}^T \sum_ {t \in \mathcal{T}} \mathcal{K}_ t \mu_{i t}, $ $ \gamma_ h \triangleq c^B \Phi^{-1}\left(1-\epsilon_ h^C\right)$ 用于对公式形式进行简化,因此,换电服务网络的部署问题可以通过一下形式描述成一个联合选址,维修和库存的模型:
min z , y , Q C ( z , y , Q ) s.t. y ih ≤ z h , ∀ i ∈ I , ∀ h ∈ H , ∑ h ∈ H y ih = 1 , ∀ i ∈ I , y ih , z h ∈ { 0 , 1 } , ∀ i ∈ I , ∀ h ∈ H , 0 ≤ Q ih ≤ Q ˉ y ih , ∀ i ∈ I , ∀ h ∈ H . \begin{array}{lll} \min _{z, y, Q} & C(z, y, Q) & \\ \text { s.t. } & y_{\text {ih }} \leq z_h, & \forall i \in \mathcal{I}, \forall h \in \mathcal{H}, \\ & \sum_{h \in \mathcal{H}} y_{\text {ih }}=1, & \forall i \in \mathcal{I}, \\ & y_{\text {ih }}, z_h \in\{0,1\}, & \forall i \in \mathcal{I}, \forall h \in \mathcal{H}, \\ & 0 \leq Q_{\text {ih }} \leq \bar{Q} y_{\text {ih }}, & \forall i \in \mathcal{I}, \forall h \in \mathcal{H} . \end{array} minz,y,Q s.t. C(z,y,Q)yih ≤zh,∑h∈Hyih =1,yih ,zh∈{0,1},0≤Qih ≤Qˉyih ,∀i∈I,∀h∈H,∀i∈I,∀i∈I,∀h∈H,∀i∈I,∀h∈H.
由于该问题无法通过商业求解器直接求解,本文设计了有效的求解算法(Constraint Generation and Parameter Search Algorithm)通过利用问问题结构实现精确求解。
四、小结
这篇文章主要应对城市交通电气化趋势下换电服务不断升级的需求,以及确保电池服务临近、用户可用性以及电网适配性的充电调度。为了更深刻的理解换电过程,本文通过建模验证了“集中充电、分布换电”的网络结构。并对比了该结构与分布充电结构,不同于传统零售行业的结论,集中充电服务会加重电池的资产。除此之外本文还有一些发现:
- 如果充电站本地充电无法接入快充电网,那么集中的电池充电的可扩展性会更高。
- 如果集中进行电池充电,服务商可以利用额外的灵活性来调整换电充电网络的设计和调度,可以更好的适应城市的复杂性。
参考文献
[1] Qi, W., Zhang, Y., & Zhang, N. (2023). Scaling up electric-vehicle battery swapping services in cities: A joint location and repairable-inventory model. Management Science, 69(11), 6855-6875.