编者按
本次解读的文章发表于 European Journal of Operational Research,原文信息:Kilic, O. A., & Tarim, S. A. (2024). A simple heuristic for computing non-stationary inventory policies based on function approximation. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2024.02.016
文章考虑单一产品、有限期限、周期性审查库存系统,其需求随机且非稳定 (non-stationary). 该类库存系统的最优控制策略结构,即 ( s , S s,S s,S库存策略,已被广泛研究。但确定最优策略参数 s s s和 S S S需要解决大规模的随机动态规划问题。为避免大规模问题时的计算困难,文章对该问题的成本函数设计了无递归近似,并遵循最短路径和凸优化的基本方法,通过高效且有效的启发式方法来计算策略参数。
1 问题背景
常规的库存控制方法针对的是稳定需求,而在大多数环境中,需求往往具有强烈的季节性和变化的趋势。管理非稳定需求下的库存是具有挑战性的,在这样的系统中,决策者面临的库存控制问题不仅关系到补货的规模,还要考虑补货的时机,而其中相关的成本函数也是基于时间且非凸的。
同时,库存问题的最优控制策略的特性一直是库存管理研究中的关注焦点。Scarf (1960) 证明了 (s, S) 策略的最优性,并展示了每个时期的最优控制决策可以通过两个临界值来表示。这一开创性的结果为大量的研究奠定基础,在此不多做赘述。Scarf 的证明同样适用于具有非稳定需求的系统。但尽管已知最优策略的结构,但找到最优非稳定策略参数需要通过解决随机动态规划,递归地构建每个时期的最优成本函数——当需求以及相应的库存水平为整数值时,它需要在每个时期考虑所有可能的库存水平和实际需求,而这可能是任意大的数量,且这类数值规划在实践中的计算耗时且复杂。
本文针对固定补货成本的有限期限、周期审查、非稳定需求的库存系统,提出了对非凸最优成本函数的近似。该近似成本函数有两个重要特性:首先,无递归,因此其可以在不依赖随机动态规划的情况下求得。其次,该近似函数由只有几个凸函数的逐点最小值定义,因此尽管有多个局部最小值,类似最优成本函数,其最小值仍容易求得。基于这两个特性,文章提出能够将近似成本函数转化为计算策略参数的有效且有效的启发式方法。
2 模型构建
文章考虑单一产品、有限期限、周期性审查库存系统,其需求随机且非平稳。规划期限由 T T T时期组成,期间的非负随机需求表示为 ξ 1 , … , ξ T \xi_1,\ldots,\xi_T ξ1,…,ξT且独立的但不一定同分布。文章假设在每个周期开始时下达补货订单,并且立即收到,随后需求得到满足,而未能被满足的需求延后(backordered). 每个补货订单会产生一个固定成本 K K K. 文章的目标是找到最小化整个规划期限内的预期总成本的库存策略。
首先考虑单期成本函数,设补货后库存水平为 y y y,则在 n n n个时期的预期持有成本(系数 h h h)和罚款成本(系数 p p p)为:
为凸(线性持有和惩罚成本)。在最优策略下,则从时期 n n n开始的预期成本的随机动态规划为:
且对所有 x x x, C T + 1 ( x ) = 0 C_{T+1}(x)=0 CT+1(x)=0. 补货后的预期成本还可写为:
文章将运用 G n ( y ) G_n(y) Gn(y)讨论最优策略。最优成本函数的结构是建立最优补货策略的基础。 Scarf (1960) 表明,最优成本函数满足𝐾-凸性,该性质表明任意时期 n n n的最优补给策略是( s n , S n s_n,S_n