供应链 | 机器取代人类?顶刊MnSc论文——人与机器:机器辅助在认知限制下对决策的影响

编者按

机器辅助决策:AI,你是助手还是对手?

本文为Management Science期刊论文,原文信息:

  • Tamer Boyacı, Caner Canyakmaz, Francis de Véricourt (2024) Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations. Management Science 70(2):1258-1275. https://doi.org/10.1287/mnsc.2023.4744

原文摘要总结如下:
许多组织最近迅速采用人工智能(Artificial Intelligence, AI)技术,这引发了人们的担忧,担心AI可能最终会在某些任务中取代人类。实际上,当机器与人类协作使用时,可以显著增强人类的互补优势。确实,由于其巨大的计算能力,机器可以以惊人的准确性执行特定任务。相比之下,人类决策者(Decision Makers, DM)灵活且适应性强,但受限于他们有限的认知能力。

本文探讨了基于机器的预测如何影响人类决策者的决策过程和结果。我们研究了这些预测对决策准确性、决策错误的倾向性和性质以及决策者的认知努力的影响。为了同时考虑到灵活性和有限的认知能力,我们在理性注意力框架下对人类决策过程进行建模。在这种设置中,机器以无认知成本的方式向决策者提供准确但有时不完整的信息。我们完整地描述了机器输入对人类决策过程在此框架中的影响。我们表明,机器输入总是提高人类决策的整体准确性,但可能仍会增加某些类型错误(如误报)的倾向性。机器还可能诱使人类投入更多的认知努力,尽管其输入非常准确。有趣的是,当决策者在认知上最受限制时,例如因时间压力或多任务处理,就会发生这种情况。综合这些结果,本文确定了人机合作可能最有益的决策环境。

关键词:机器学习 • 理性注意力不集中 • 人机协作 • 认知努力

1. 问题背景

智能机器和基于数据库的技术的增加采用引发了对人类决策角色未来的质疑,但也显示了人机之间互补的潜力。许多现实世界中的监督式机器学习应用的目的不是仅仅基于算法的输出产生最终决策,而是以自动化预测的形式向人类决策者(DM)提供有用信息。目前,包括国防和医疗保健行业、法律和翻译服务、人力资源管理、供应商管理或供应链操作在内的各个部门都在寻求利用这种人机互补性。

人类和机器在决策过程中相互补充。人类DM依靠他们的认知灵活性,整合来自广泛多样化来源的信息,包括这些决策所处的具体环境。相比之下,机器只能提取这些信息的有限子集,但在处理大量数据方面更加精确。在数据技术改善某些信息提供的程度上,人机共同决策通常提升这些决策的整体质量。然而,机器预测对决策错误的影响以及对人类的认知努力和时间投入的影响仍不完全清楚。

本文考虑人类和机器智能的定义特征以解决如下问题。

  • 基于机器的预测对人类判断有什么影响?
  • 这些预测以哪些方式影响人类的决策制定过程、认知努力程度以及决策错误性质?
  • 在哪些决策环境中,人机合作更加有成果?

为了回答这些问题,本文考虑了一个基本的决策问题,其中一个机器学习算法通过评估人类决策者(DM)面临的部分不确定性来协助人类决策者。本文基于Sims(2003, 2006)提出的理性注意力不集中理论对这个问题进行建模,以捕捉机器和人类智能之间互补性的最基本来源。也就是说,DM利用认知灵活性来整合各种信息源,包括决策者的领域知识或做出决策的上下文的特定方面。然而,DM 受到有限认知能力的限制,因此评估信息需要付出认知努力。 DM 付出的努力越多,DM 的评估就越准确。相比之下,机器则不受此限制,并且可以免费提供某些信息的准确评估。然而,机器无法评估所有信息源,例如DM的领域知识和决策背景。

本文建立在理性注意力理论的基础上,研究了机器学习算法如何协助有限认知能力的人类决策者(DM)处理部分不确定性。研究发现:

  • 人机合作在提高决策准确性和总体预期效用方面具有优势,总能减少假阴性错误率。
  • 然而,基于机器的预测可能会增加假阳性的数量,并诱导DM付出更多的认知努力,增加决策过程的时间和不确定性。
  • 当DM的先验信念较弱和评估信息的认知成本较高时,依赖机器的决策可能适得其反。
  • 研究提供了对人类和机器在需要重复做出基于预测的决策任务中如何更有效合作的见解,尤其是在医疗、制造、人力资源和司法系统等领域。

本文结构概述如下,供读者参考:

  • 第2节:介绍人类和机器的基本模型。
  • 第3节:描述人类的选择行为和认知努力以及由此引起的决策错误。
  • 第4节:阐述机器协助对人类决策的影响。
  • 第5节:总结关键结论。

2. 人机模型描述

本节首先提出一个决策模型,该模型在理性注意力框架中捕获了人类的灵活性和有限的认知能力,然后考虑决策者(DM)由机器协助的情况。

  • 决策过程描述
    • 世界状态评估: 人类DM需要判断世界的真实状态 ω ∈ { g , b } \omega \in \{g, b\} ω{ g,b},其中 g g g代表好, b b b代表坏。
    • 先验信念: μ \mu μ 表示DM对状态为好的先验信念( μ = P { ω = g } \mu = P\{\omega = g\} μ=P{ ω=g})。
    • 认知努力: DM通过付出认知努力来评估相关信息,以调整其对状态的信念。努力越大,评估越准确。
    • 机器协助: 机器无认知成本地准确评估信息,利用其高计算能力辅助DM。
    • 决策宣布: DM基于评估宣布状态是否良好,选择 a ∈ { y , n } a \in \{y, n\} a{ y,n}(是/否),以反映其决策。
  • 目标与收益
    • 准确性与收益: 如果DM的选择与真实状态匹配( a = y a=y a=y ω = g \omega = g ω=g a = n a = n a=n ω = b \omega = b ω=b),则认为选择准确,DM获得单位收益。
    • 最大化预期准确性: DM的目标是在考虑认知成本的前提下,最大化其决策的预期准确性。

2.1 人类决策者(Human DM)

人类决策者(DM)受限于有限的认知能力,因此评估可用信息需要付出认知努力。具体而言,DM可以从任何信息源关于状态 ω ∈ Ω = { g , b } \omega \in \Omega = \{g, b\} ωΩ={ g,b} 引出任何精度等级的信号 s s s

我们定义信息处理策略为信号和状态之间的联合分布 f ( s , ω ) f(s, \omega) f(s,ω)。DM可以自由选择任何信息处理策略,只要它与DM的先验信念贝叶斯一致,即 ∫ s f ( s , g ) d s = μ \int_s f(s, g)ds = \mu sf(s,g)ds=μ 必须成立。这意味着选择一个策略 f ( s , ω ) f(s, \omega) f(s,ω) 等同于确定 f ( ω ∣ s ) f(\omega|s) f(ωs),给定信号 s s s 时DM的后验信念即真实状态为 ω \omega ω 的概率。因此,DM可能以任何特定顺序从不同信息源引出不同的信号,并使新信号的搜索依赖于先前的信号,以确定DM的后验信念的精度。

2.1.1 认知努力
  • 世界状态的认知
    • 先验与后验信念: DM通过生成信息性信号 s s s,将先验信念 μ \mu μ 更新为后验信念 f ( g ∣ s ) f(g|s) f(gs)
    • 不确定性衡量: 以熵 H ( p ) H(p) H(p) 表示不确定性,对于好状态的概率 p p p H ( p ) = − p log ⁡ ( p ) − ( 1 − p ) log ⁡ ( 1 − p ) H(p) = -p \log(p) - (1 - p)\log(1 - p) H(p)=plog(p)(1p)log(1p)。熵是不确定性的衡量,对应于不了解状态的预期损失。
  • 任务难度
    • 先验不确定性: H ( μ ) H(\mu) H(μ) 衡量DM需要解决的先验不确定性水平,完全捕获决策任务的难度级别。
    • 最大难度: 当DM对状态没有先验信息时,即 μ = 1 / 2 \mu = 1/2 μ=1/2,不确定性最大,此时 H ( ⋅ ) H(·) H() 达到最大值,我们将 H ( μ ) H(\mu) H(μ) 称为任务难度。
  • 剩余不确定性
    • 后验不确定性: H ( f ( g ∣ s ) ) H(f(g|s)) H(f(gs)) 衡量引出信号 s s s 后的不确定性水平,因此 E s [ H ( f ( g ∣ s ) ) ] E_s[H(f(g|s))] Es[H(f(gs))] 是在策略 f f f 下,在DM处理任何信息之前的预期剩余不确定性水平。
    • 不确定性的预期减少: 等于 H ( μ ) − E s [ H ( f ( g ∣ s ) ) ] H(\mu) - E_s[H(f(g|s))] H(μ)Es[H(f(gs))],对应于信息理论中先验和后验分布之间的互信息,指定了引出信息的预期量。这个数量总是正的,即信息总是减少不确定性。
  • 认知成本
    • 减少不确定性的成本: 减少不确定性的幅度越大,处理的信息越多,因此需要的认知努力越多。我们假设DM的认知成本与预期不确定性减少量成线性关系。形式上,信息处理策略f的认知成本等于 C ( f ) = λ ( H ( μ ) − E s [ H ( f ( g ∣ s ) ) ] ) C(f) = \lambda (H(\mu) - E_s[H(f(g|s))]) C(f)=λ(H(μ)Es[H(f(gs))]),其中 λ > 0 \lambda > 0 λ>0 是信息的边际认知成本,我们将其称为信息成本。
    • 信息成本 λ \lambda λ的含义: λ \lambda λ 确定了DM在时间、注意力和认知能力方面的约束程度。它可能代表评估信息的固有难度,或者由于时间压力或多任务处理,DM的认知能力被竞争任务消耗的程度。在后一种情况下, λ \lambda λ 是对应于有限认知能力约束的影子价格。因此, λ \lambda λ 的值越高,DM需要付出的努力越多来引出减少不确定性的信号。
    • 认知成本的线性假设: 认知成本与预期熵减少量的线性关系是理性注意力文献中的标准假设。认知成本在生成信号的精度上是凸的(即, C C C f ( s ∣ ω ) f(s|\omega) f(sω) 上是凸的)。也就是说,引出更多信息性的信号成本逐渐增加。
2.1.2 决策与准确性
  • 决策选择
    • 信息处理策略选择: DM选择信息处理策略 f f f,以成本 C ( f ) C(f) C(f) 获得更新后的信念 f ( g ∣ s ) f(g|s) f(gs)
    • 行动选择: 基于更新后的信念,DM然后选择行动 a ∈ { y , n } a\in\{y, n\} a{ y,n} 来最大化准确性,如果 f ( g ∣ s ) > f ( b ∣ s ) f(g|s) > f(b|s) f(gs)>f(bs),则 a = y a = y a=y;否则 a = n a = n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值