作者采用M/M/1模型来设计整篇文章的排队问题,首先,作者建立”先来先服务模型“(first-come first-served model),写出walk-in channel和online channel下的消费者效用函数:
U
w
=
∑
i
=
0
n
−
1
p
i
⋅
(
R
−
c
w
i
+
1
μ
)
−
T
U_w=\sum_{i=0}^{n-1} p_i \cdot\left(R-c_w \frac{i+1}{\mu}\right)-T
Uw=i=0∑n−1pi⋅(R−cwμi+1)−T
U
o
=
∑
i
=
0
∞
p
i
⋅
(
R
−
c
o
i
+
1
μ
)
−
T
U_o=\sum_{i=0}^{\infty} p_i \cdot\left(R-c_o \frac{i+1}{\mu}\right)-T
Uo=i=0∑∞pi⋅(R−coμi+1)−T
其中,
U
w
U_{w}
Uw中的
∑
i
=
0
n
−
1
\sum_{i=0}^{n-1}
∑i=0n−1则代表了累加从队列中没有任何顾客(
i
=
0
i=0
i=0)至有
n
−
1
n-1
n−1个顾客等待的情形,表示是为了计算从队列中无顾客等待到
n
−
1
n-1
n−1个顾客等待时的总效用;而
U
o
U_{o}
Uo中的
∑
i
=
0
∞
\sum_{i=0}^{\infty}
∑i=0∞则代表了线上渠道信息不透明(手机线上点单时不会提示用户前方有多少人等待,或者说只有成功付款后手机上才显示前方的等待人数)导致在线点单者点完单就必须等待的情形(看不见的等待)。当根据M/M/1的系统稳定状态的条件(公式1),写出系统稳态(公式2)下的顾客进入系统的概率
p
i
p_i
pi是online customer(OC)比例
γ
\gamma
γ的函数
p
i
(
γ
)
p_i(\gamma)
pi(γ),即进而得出全渠道稳定状态下的一个重要特性,即,在稳定的全渠道系统中,OC的预计停留时间随着OC的人数比例严格递增。
λ
P
i
=
μ
P
i
+
1
\begin{equation} \lambda P_i=\mu P_{i+1} \end{equation}
λPi=μPi+1
得出稳态条件后,作者定义系统产出system throughput( T H ( γ ) TH(\gamma) TH(γ))和社会福利social welfare( S ( γ ) S(\gamma) S(γ)),并以Naor (1969)的传统walk-in系统作为本文全系统下( γ γ γ=0)的benchmark,写出该情景下的 T H ( γ ) TH(\gamma) TH(γ), S ( γ ) S(\gamma) S(γ)和 U U U。之后,作者得出渠道均衡决策(即顾客在两种渠道之间的选择无差异),该决策与单位等待成本密切相关。
下图展示了顾客在不同的在线单位等待时间和交通强度下的渠道选择偏好。该结果揭示:只要在线单位等待成本相对于现场等待成本足够小,顾客总是以一定的概率选择在线渠道。
紧接着,作者探讨了全渠道服务下的影响,根据以上得出的均衡结果探讨纯线下模式(all-walk-in 均衡),纯线上模式(all-online 均衡)以及全渠道模式(omni均衡)。主要结论表明,引入较低单位等待成本的online channel确实提高了系统产出TH,然而却有益或损害客户的个人效用和社会福利,具体取决于均衡渠道选择,这导致在线渠道的引入在各利益方之间产生分歧。
对此,作者在后面一章第一节探讨了现有的全渠道系统的运营补救措施,即,行业最先进技术的影响。第一项是在线监管(Online-Channel Regulations),即,限制使用在线渠道,包括限制线上顾客下单时间即,设 θ i \theta_i θi为顾客下单被接受的概率, 1 − θ i 1-\theta_i 1−θi为顾客下单被拒绝的概率,此时的系统稳定状态条件为:
在该稳定状态及均衡结果下,作者探讨了监管者是否对online customer揭露实时队伍信息,主要结果表明,当单位等待时间低于某一阈值时,不揭露队伍信息(unobservable)时全渠道服务的总产量不少于揭露队伍信息(observable)的在线服务渠道的吞吐量。
第二个方法为战略延迟(strategic delay),设 d i d_i di为SD时间,此时线上渠道和线下渠道的消费者效用为:
该情况下没有封闭解析解,然而数值算例表明该情况下的结论和benchmark下的结论一致,该均衡决策与单位等待成本密切相关。
之后,作者在该章第二节探讨了现实中已有的另一种运营模式:渠道专用全能系统(Channel-Dedicated Omni-Systems),即服务提供商分出一部分capacity专门服务online customer,作者将线上和线下渠道服务设为两个单独的queuing system,进行计算,得出主要结论为,即使将容量分割后降低了容量效率,但渠道专用系统下的吞吐量不一定比仅步入式下的吞吐量低;对于低流量的系统,容量分配不仅可以抵消奉献带来的效率损失,还可以吸引更多的在线订单以获得更大的吞吐量。紧接着,作者在下面一章节又探讨了以线下顾客为优先(Prioritization for walk-in customer)的补救措施,主要结论为优先级全系统可以提供全渠道技术,在传统的步入式系统的基础上同时提高提供商的收入和客户体验,然而整个系统的吞吐量可能会收到影响。
在设计预约时间表时,作者希望最小化成本 ( C S Γ S + C W Γ W + C I Γ I + C O Γ O ) (C_S\Gamma_S+C_W\Gamma_W+C_I\Gamma_I+C_O\Gamma_O) (CSΓS+CWΓW+CIΓI+COΓO),其中 C S C_S CS和 C W C_W CW分别表示预约患者和Walk-in Customer单位等待时间的成本, Γ S \Gamma_S ΓS和 Γ W \Gamma_W ΓW分别表示预约患者和Walk-in Customer的预期等待时长; C I C_I CI和 C O C_O CO分别表示医生单位空闲时间和加班时间的成本, Γ I \Gamma_I ΓI和 Γ O \Gamma_O ΓO分别表示医生空闲和加班的预期时长。因此,作者的目标函数是最小化患者等待、医生空闲及加班造成的总成本。
假设医生为每一个患者接诊的时长恰好花费一个时间段(虽然每位患者的就诊时间需花费一个时段,但每个时段允许接收多个患者的预约)。记
Γ
D
\Gamma_D
ΓD为医生开始提供服务到最后一个患者离开医院所花费的时间。因此,
Γ
O
=
Γ
D
−
T
\Gamma_O=\Gamma_D-T
ΓO=ΓD−T。记
β
t
\beta_t
βt为第
t
t
t个时间段内Walk-in Customer的数量(被定义为随机变量),则
N
W
=
E
{
∑
t
=
1
T
β
t
}
N_W=\mathbb{E}\{\sum_{t=1}^T \beta_t\}
NW=E{∑t=1Tβt}为预期Walk-in Customer的总数。于是有,
Γ
I
=
Γ
D
−
∑
t
=
1
T
x
t
−
N
W
\Gamma_I= \Gamma_D-\sum_{t=1}^T x_t-N_W
ΓI=ΓD−∑t=1Txt−NW。记
C
D
=
C
I
+
C
O
C_D=C_I+C_O
CD=CI+CO,且不失一般性,令
C
S
=
1
C_S=1
CS=1。于是目标函数简化为
Γ
S
+
C
W
Γ
W
+
C
D
Γ
D
−
C
I
∑
t
=
1
T
x
t
.
\Gamma_S+C_W\Gamma_W+C_D\Gamma_D-C_I\sum_{t=1}^Tx_t.
ΓS+CWΓW+CDΓD−CIt=1∑Txt.
为计算
Γ
S
\Gamma_S
ΓS,
Γ
W
\Gamma_W
ΓW和
Γ
D
\Gamma_D
ΓD,作者首先计算
Π
t
(
k
)
\Pi_t(k)
Πt(k),意为有
k
k
k个患者在第
t
t
t个时段结束时还在等待就医。记
p
t
(
b
)
p_t(b)
pt(b)为
b
b
b个Walk-in Customers在第
t
t
t个时间段到达(相当于
p
t
(
b
)
=
P
r
(
β
t
=
b
)
p_t(b)=Pr(\beta_t=b)
pt(b)=Pr(βt=b))。于是
Π
t
(
k
)
\Pi_t(k)
Πt(k)通过计算联合概率有如下递归方程
Π
t
(
k
)
=
∑
j
=
0
k
−
x
t
+
1
Π
t
−
1
(
j
)
p
t
(
k
−
x
t
−
j
+
1
)
+
{
Π
t
−
1
(
0
)
p
t
(
0
)
if
k
=
0
and
x
t
=
0
,
0
otherwise
\begin{aligned}\Pi_{t}(k)&=\sum_{j=0}^{k-x_{t}+1}\Pi_{t-1}(j)p_{t}(k-x_{t}-j+1)\\&+\left\{\begin{matrix}\Pi_{t-1}(0)p_t(0)&\text{if }k=0\operatorname{and}x_t=0,\\0&\text{otherwise}\end{matrix}\right.\end{aligned}
Πt(k)=j=0∑k−xt+1Πt−1(j)pt(k−xt−j+1)+{Πt−1(0)pt(0)0if k=0andxt=0,otherwise
记
N
ˉ
t
\bar{N}_t
Nˉt为一个较大的数(可以被视为Walk-in Customer在
t
t
t时段的分布在
N
ˉ
t
\bar{N}_t
Nˉt这个位置进行截断)。于是有
Γ
D
=
T
+
∑
k
=
1
N
T
‾
k
Π
T
(
k
)
,
\Gamma_D=T+\sum_{k=1}^{\overline{N_T}}k\Pi_T(k),
ΓD=T+k=1∑NTkΠT(k),
上式右侧的第二项表示在第
T
T
T个时段结束时,还在等候的患者数量的期望。记
s
t
s_t
st为第
t
t
t个时段结束时还在等候的预约患者数量,于是有递归方程
s
t
=
(
s
t
−
1
+
x
t
−
1
)
+
s_t=(s_{t-1}+x_t-1)^+
st=(st−1+xt−1)+,进一步有
Γ
S
(
x
)
=
∑
t
=
1
T
s
t
+
∑
j
=
1
s
T
−
1
j
.
\Gamma_S(\boldsymbol{x})=\sum_{t=1}^Ts_t+\sum_{j=1}^{s_T-1}j.
ΓS(x)=t=1∑Tst+j=1∑sT−1j.
且所有患者等待的预期总时长为
Γ
T
(
x
)
=
∑
t
=
1
T
∑
k
=
1
N
t
‾
k
Π
t
(
k
)
+
∑
k
=
1
N
T
‾
(
∑
j
=
1
k
−
1
j
)
Π
T
(
k
)
.
\Gamma_T(\boldsymbol{x})=\sum\limits_{t=1}^T\sum\limits_{k=1}^{\overline{N_t}}k\Pi_t(k)+\sum\limits_{k=1}^{\overline{N_T}} \Big(\sum\limits_{j=1}^{k-1}j\Big)\Pi_T(k).
ΓT(x)=t=1∑Tk=1∑NtkΠt(k)+k=1∑NT(j=1∑k−1j)ΠT(k).
因此,Walk-in Customers的总等候时长为
Γ
W
(
x
)
=
Γ
T
(
x
)
−
Γ
S
(
x
)
.
\Gamma_W(\boldsymbol{x})=\Gamma_T(\boldsymbol{x})-\Gamma_S(\boldsymbol{x}).
ΓW(x)=ΓT(x)−ΓS(x).
作者发现目标函数
Γ
S
+
C
W
Γ
W
+
C
D
Γ
D
−
C
I
∑
t
=
1
T
x
t
\Gamma_S+C_W\Gamma_W+C_D\Gamma_D-C_I\sum_{t=1}^Tx_t
ΓS+CWΓW+CDΓD−CI∑t=1Txt具有Multimodularity的性质,这种性质使得局部最优解就是全局最优解。以上的讨论均假设预约患者会按时到医院就诊,没有违约。作者在后续进一步考虑了预约患者会违约时的模型,并设计了一种约束生成算法来进行求解。