服务运营 | NRL:疫苗供应链优化建模:综述与未来机遇(上)

编者按:

本次推文将解读近期发表在Naval Research Logistics中的Optimization modeling for pandemic vaccine supply chain management: A review and future research opportunities一文。这篇文章总结与反思了大流行时期的疫苗供应链管理,具体包括疫苗接种中心选址、疫苗库管管理、疫苗的物流与分配等问题。这篇文章同时也对关于疫苗运营管理的未来前沿研究给出了思考。

我们计划用两篇推文来介绍这篇文章,让读者对疫苗供应链管理的过去与未来有一个初步的印象。在本次推文中,我们主要概述疫苗的(包含不确定环境下的)供应链模型与选址配送模型。本次推文受众群体的不只局限在医疗(疫苗)运营管理的研究人员,这篇综述总结的许多一般化模型也适用于(人道主义)物流、灾害管理与库存管理等方向的研究人员。

参考文献:Dey, S., Kurbanzade, A. K., Gel, E. S., Mihaljevic, J., & Mehrotra, S. (2024). Optimization modeling for pandemic vaccine supply chain management: A review and future research opportunities. Naval Research Logistics, 1–41.


COVID-19大流行是近代史上最严重的全球公共卫生危机,它造成了全球数亿人感染以及近700万人死亡。此次大流行也凸显了及时和广泛部署疫苗的重要性:当快速研发新型疫苗成为可能(mRNA疫苗技术加速疫苗研发),相关的研究困境转向疫苗的运营问题,比如:

  • 疫苗的供应往往有限,特别是在早期阶段,因为如何为不同地区的人分配这一宝贵的医疗资源?
  • 不同的疫苗制造商生产的疫苗对不同的病毒(原始毒株与变异病毒)有不同的免疫应答能力,且不同品牌的疫苗具有不同的保质期、储存温度要求(例如,区别于传统灭活疫苗的28摄氏度储存要求,新兴的mRNA疫苗需要超低温冷链运输,-80-60摄氏度)与注射方案(单次or多次)。考虑这些因素,如何进行疫苗的库存管理,物流与配送?

为更好地解决这些问题,并对未来潜在的大流行提供建议,作者检索了2020-2023年以来关于疫苗运营管理的109篇文献,同时还纳入了2011-2019年的高被引文献。这些文献大部分来自POM,EJOR,NRL,Omega,IJPE,TRE,COR,CIE,ANOR与Vaccine等MS/OR领域与疫苗领域的主流期刊。另外,这些文献可细分为3个部分,具体如下:

  • 优化类的文章,包括资源分配、选址、库存管理、供应链管理和路径规划领域的至少一个数学模型。
  • 模拟类的文章,重点关注多种疫苗的优先次序、管理和库存控制,依赖仿真方法。
  • 其他涉及描述性分析、概念化、疫苗犹豫和废物管理的文章。

注意,在MS与M&SOM中,一些文章的主题也与疫苗相关,这些文章主要关注疫苗政策方面的经济学分析(机制设计or实证分析),它们基本上不包含在此次的综述文章中。比如:

  • Kenan Arifoğlu, Christopher S. Tang (2021) A Two-Sided Incentive Program for Coordinating the Influenza Vaccine Supply Chain. Manufacturing & Service Operations Management 24(1):235-255.
  • Sourafel Girma, David Paton (2023) Covid-19 Vaccines As a Condition of Employment: Impact on Uptake, Staffing, and Mortality in Elderly Care Homes. Management Science 70(5):2882-2899.

不仅如此,在这篇综述中,在Nature,Science,Nature communications等知名综合性期刊及柳叶刀系列期刊上关于疫苗运营管理(疫苗分配优化)的文章也较大程度被忽视。

我们这里还补充了近几年国家自然科学基金管理科学部中有关疫苗的部分立项,供读者参考:

  • 基于行为经济学理论的老人疫苗接种助推策略开发、试验与评价:以流感疫苗为例,青年基金,武汉大学,2023
  • 信息经济学视角下的疫苗接种激励政策研究——动态群体博弈和最优实验问题,青年基金,厦门大学,2023
  • 基于个体有限理性的流感疫苗供应链需求规划与供应管理,面上,中国科学技术大学,2021

2. 疫苗供应链

一条完整的疫苗供应链主要由如下4个部分组成,包括疫苗制造商,疫苗配送中心,疫苗接种中心(例如医院、社区卫生中心、移动疫苗接种诊所)与需求端,如下图所示。

3. 疫苗供应链模型

3.1 疫苗制造商

在疫苗供应链中,制造商与配送中心之间以及配送中心与接种中心之间可能存在产能限制。这些产能限制可能涉及各种资源,如疫苗数量、疫苗批次数量、车队规模、劳动力、时间、预算以及生产所需的其他受限资源。此外,产能限制还可能与商品、时间或设施有关。由于生产所需的时间,可能会出现提前期方面的考虑。产能约束最简单的形式可表示为 (1)。其中 C i p t M C_{ipt}^M CiptM代表制造商i在时间 t t t p p p类疫苗产能。

在实践中,一般会有多家分配中心向制造商申请疫苗。然而,因为产能限制,制造商只有在完成当前订单后,才能满足下一个需求。为了更全面地反映这个限制,在(1)的基础上使用两个时间指数( t ′ t^′ t代表订购时间, t t t代表接收时间, t ′ ≤ t t^′\leq t tt),延伸为(2)。

3.2 疫苗配送中心
3.2.1 流量守恒

分配中心在疫苗供应链中扮演着重要角色,为疫苗的流入和流出提供便利。流入分配中心的疫苗包括从制造商处采购的疫苗、分配中心从前一时期结转的库存以及从其他分配中心收到的货物。流出量则包括转运至疫苗接种中心、维持未来时段的库存、向其他分配中心 发货,以及处理因过期、损坏或处理不当而造成的疫苗浪费。如果分配中心也能充当疫苗接种中心,那么向个人接种疫苗就会成为另一种流出。

(3)-(8)式保证了分配中心的流量守恒。(3)-(4)式表示分配中心的库存流量守恒约束。

(5)保证如果分配中心有流出,则必须有对应的流出方式。

相对应的,(6)-(7)保证如果有流入,则必须来自现有的流入方式。

3.2.2 冷链要求

疫苗可能对温度有不同的储存要求,例如低温、极低温或超低温。此外,分配中心的各冷藏级别的容量都可能不同,且可能随时间而变化。Tavana等(2021)采用(10)式来维持极冷存储的容量约束,(11)式来持续极冷存储的容量约束,(12)式来确保分配中心 j j j在时间段 t t t内的超冷存储容量约束。

3.2.3 车队和无人机

疫苗通过不同冷藏级别的冷链车运输,现有文献中的大多数研究在建模时并未考虑车辆。在实践中,每个分配中心都可能有自己专用的车队,可用于服务不同的疫苗接种中心。(15)式代表了分配中心车队可用性的综合表示,反映了可用车辆的总体积量。

此外,研究人员也开始探索无人机在疫苗配送中的应用。Wang等(2023)在设施选址问题中优化了无人机配送疫苗的能力,Enayati和Li等(2023)的模型则涉及无人机基地、无人机中继站和分配中心的选址问题,将无人机配送的每个可能的出发地-目的地路径与可控的无人机停靠点、无人机航程和低温时间进行了分层。

3.3 疫苗接种中心

在本节中作者将讨论疫苗接种中心在流量守恒、分配中心-接种中心的分配问题、医护人员数量和调度、疫苗保质期、疫苗瓶和优先群体这6方面的考虑因素。

3.3.1 库存和流量平衡

疫苗接种中心与分配中心类似,既有疫苗流入,也有疫苗流出。疫苗接种中心的流入有多种来源,包括从生产商处采购、从上一时期结转的自身库存、从其他疫苗接种中心或分配中心运输。疫苗接种中心的流出包括向其他疫苗接种中心的运输、维持未来时期的库存、将剩余疫苗返还给分配中心、管理疫苗浪费(如开瓶浪费或不当接种)以及为个人接种疫苗。在本文中,我们假设疫苗接种中心的流出量只能是库存、接种和浪费。此外,疫苗接种中心只能接收来自前期库存和分配中心的流入。疫苗需求既可以是确定的,也可以是随机的。此外,以尽量减少开瓶浪费,应同时考虑剂量和小瓶层面的流量。在这一表述中,需求量是以疫苗瓶数表示的。如果以疫苗剂量来表示需求量,则需要加入适当的换算系数才能进行准确计算。

(16)式是假定没有供应短缺的情况下疫苗接种中心的库存流量约束。与约束(5)至(8)中的分配中心流量约束类似,疫苗接种中心也可以制定位置-流量约束、库存能力和安全库存水平约束。

在供应稀缺的情况下,(16)式将导致不可行性,因此必须用表示分配决策的决策变量 x k p t v x_{kpt}^v xkptv来代替 d k p t d_{kpt} dkpt。此外,还必须添加 (17)式,以确保考虑到短缺问题。

3.3.2 分配中心-接种中心的分配问题

分配中心和疫苗接种中心之间的联系可以通过多种方式建立。文献中的几篇文章探讨了不同的分配方法,包括一对一分配,集合覆盖分配和集合打包分配。在疫苗从分配中心流向相应的疫苗接种中心的情况下,可以使用(18)式对其进行建模。

一旦指定了分配中心,下一步就是将疫苗从分配中心分配到不同的目的地,如区域仓库、疫苗接种中心 或特定亚人群。这些模型采用了不同的分配规则和优先策略来确定疫苗的分配数量,目标是在考虑疫苗有限可用性的同时最大限度地减少感染传播。除了效率方面的考虑外,服务亚人群之间的公平性通常也是这些模型的关键目标或限制因素。

3.3.3 医护人员

医疗保健人员在大流行病管理中起着至关重要的作用。(19)式反映了疫苗接种中心医护人员的可用性和可持续性。

Wang等(2023)、Zhang等(2022)的研究重点是疫苗接种的时间安排。Zhang等(2022)提出了一种大规模疫苗接种预约调度模型,该模型有可能扩展到医护人员调度,包括时间要求。他们的线性排序公式考虑了位置、人口规模和时间窗口,以确定最佳的疫苗接种中心位置、预约、将预约分配到选定的疫苗接种中心,以及疫苗接种时间的安排。Bandi等(2021)强调了有效的预约时段管理、第二剂储备和灵活的疫苗偏好对优化两剂疫苗接种率的重要性。

3.3.4 疫苗保质期

疫苗瓶是易腐物品,保质期用 λ s l \lambda^{sl} λsl表示。一旦疫苗瓶的保质期过期,瓶中的疫苗剂量就不能安全使用,造成浪费。Geordiadis(2021)通过引入(20)-(24)式来保证疫苗瓶保质期的正确流动。

3.3.5 疫苗瓶、剂量和开瓶浪费间的关系

有几篇文章在多中心系统中采用库存补充策略(Fadaki等,2022;Georgiadis和Georgiadis,2021;Hovav和Tsadikovich,2015),在考虑到所考虑疫苗的特殊需求的前提下,优化疫苗接种交付并减少浪费。这些要求包括冷链管理、储存条件、配送中心和接种中心特定疫苗瓶的尺寸以及过期时限等。一般来说,当疫苗瓶打开时,瓶中的所有剂量都应在过期和浪费之前接种。打开的疫苗瓶保质期通常短于未打开疫苗瓶的保质期。(25)式通过将开瓶剂量总数等同于所有优先群体的疫苗接种总数和开瓶流失量,确保了开瓶与剂量之间的平衡。

3.3.6 优先群体

为了有效应对大流行病,尤其是在供应有限的情况下,在不同的亚群体中确定疫苗的优先次序至关重要。在确定优先次序时可考虑各种因素,如年龄、职业、社会接触、健康状况、收入和种族。例如,Fadaki等(2022)根据“社区传播”参数分配 COVID-19 疫苗,该参数反映了特定时间特定地点未接种疫苗的人数。低优先级组只有在高优先级组的需求得到满足后才能接种疫苗。时间段结束时剩余的疫苗将通过库存管理转入下一个时间段。

4. 选址和路径规划模型

在COVID-19背景下,探究配送中心的决策对于疫苗供需匹配至关重要。基础模型围绕需求、距离、覆盖范围、优先级、所需服务水平和公平性展开,主要包括设施选址模型和覆盖模型。

4.1 设施(疫苗接种中心)选址模型

Lusiantoro等(2022)考虑多目标设施选址模型(公式(34))。其中,第一个目标函数通过最大化需求覆盖范围来确保有效性,第二个目标函数通过最小化需求加权距离来确保效率。

此外,关于设施选址的模型还可以从以下多个方面展开:Bravo等(2022)采用了类似于公式 (34) 中给出的模型,但不考虑第二个目标函数,且决策变量 s s k s_{sk} ssk是二元变量,用于捕获当前公式中的覆盖百分比;Polo等(2015)使用GIS数据,考虑了医疗保健劳动力规划和空间可达性;Cabezas等(2021)使用随机优化方法,将患者对疫苗接种中心的距离偏好纳入考虑;Bertsimas等(2022)在选址模型中纳入了流行病学模型;Dastgoshade等(2022)利用罗尔斯理论和功利主义公平理论,开发了分配优化框架;Soria-Arguello等(2021)基于生产工厂和现有配送中心,定位了中间配送中心;Kumar等(2022)计算了疫苗接种中心应运营的最佳天数;Luo等(2023)将线性效用函数与COVID-19服务中心选址决策相结合,考虑了出行距离、等待时间和基于位置的服务;Zhang等(2022)将预约安排与疫苗接种中心选址问题合并,地点决定取决于每个地点接受的预约和疫苗接种顺序;Cao等(2023)通过考虑随机感染风险,结合运送废物和候选处置中心周围的人口,找到了COVID-19废物处置中心的最佳位置。

4.2 覆盖模型

最大覆盖模型(maximum coverage model)通过考虑由于人口密度、现有药店和其他基础设施等相关因可能出现的具体要求来支持区域决策(模型见(35)),其中 P ˉ s \bar{P}_{s} Pˉs表示覆盖有效性。

在该模型中,需要关注的点是 P ˉ s \bar{P}_{s} Pˉs的多种计算方式,最常见的计算方式是通过计算各覆盖站点中的人口规模实现。

5. COVID-19疫苗供应链模型中的不确定性建模

在COVID-19疫苗供应链的不确定性研究中,需求不确定性是主要形式之一。处理不确定性的模型主要包括随机库存模型、两阶段随机规划、鲁棒优化和分布式鲁棒优化方法,以及机会约束建模。

5.1 随机库存模型

持续或定期的库存审查政策可用以应对供应链的不确定性。在持续审查政策下,再订购点和再订购数量是关键决策,以便剩余库存满足所需服务水平 ( 1 − α ) (1-\alpha) (1α)下的提前期需求 d ( l ) d(l) d(l),最优的订购数量见公式(38)。

定期审查基于策略的库存决策会使用报童模型架来考虑定期审查库存,此外,报童模型还长被用于建立合同模型以实现供应链协调。

5.2 两阶段随机规划

在两阶段随机规划方法中,第一阶段做出当前的战略决策;根据第一阶段的决策,第二阶段做出观望(wait-and-see)决策,一般模型见公式(39)和(40)。

Mehrotra等(2020)是最早在呼吸机分配方面使用两阶段随机规划框架的研究者之一。Lai等(2021)提出的两阶段随机规划模型通过考虑疫苗接种中心的开放、疫苗接种中心在人口地点的分配以及所需的医护人员作为第一阶段变量,最大限度地降低运营成本。第二阶段模型结合了离散场景的多阶段规划,并将每个地点在规划范围内的疫苗运输、库存、短缺和需求满足视为决策变量。还考虑了每个疫苗接种中心在每个时间段所需的人员数量,以确保根据其服务率满足最低平均需求阈值。此外,耦合约束可以防止满足需求所需的医护人员数量超过任何给定时间段内分配的工作人员总数。类似地,只要在第一阶段在疫苗接种中心之间建立一对一的分配,人口站点的需求就可以由疫苗接种中心满足。

5.3 鲁棒和分布式鲁棒优化方法

Mohammadi等(2022)使用了一种能够最大程度地减少死亡的鲁棒方法。公式 (41) 给出了相应的目标函数表达式,其约束与两阶段随机规划模型中的约束一致。另外为解决非线性问题,需将最小化死亡目标和鲁棒性引起的非线性进行线性化。

在该模型基础上,Gilani等(2022)提出了基于不确定性集和切割超平面的动态鲁棒优化方法,与对应的静态模型相比减少保守性,同时保持鲁棒性;Wang等(2023)开发出一种两阶段鲁棒优化模型,用于供应不确定性下的设施选址和调度,目标是使用无人机向偏远地区分发疫苗。除了两阶段随机规划模型之外,Basciftci等(2023)还利用分布式鲁棒优化技术进行鲁棒化。分布式鲁棒优化方法在随机参数的某些支撑集上定义的模糊集,并从中选择最坏的情况分布,这区别于两阶段随机规划模型中的对预期成本设定特定概率分布的假设。

5.4 机会约束建模

在随机优化中,处理机会约束问题可能具有挑战性。然而,在疫苗研究的背景下,随机参数的正态性假设简化了问题并且被广泛使用。例如,Azadi、Eksioglu和Geismar (2020) 使用机会约束来确保每个疫苗接种中心在每个时间段提供的儿科疫苗数量,在至少 ( 1 − α ) (1 − α) (1α)百分比的时间内满足随机需求。如果正态性假设保持不变,则仅在表达式右侧存在随机参数(而不是作为变量系数)是很容易处理的,因为机会约束的最终确定性等价表达式是线性的。Navaei等(2022)还利用这种技术对负责在每个可能的供应链参与者之间分发疫苗的每辆车施加机会约束,包括制造商(当地工厂)到配送中心,或仓库到疫苗接种中心(医院、药房)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值