编者按:
本文提出了一种宏观流体建模框架,用于支持平台在运营大规模基于应用的网约车系统时进行战略决策。该框架能够捕捉网约车系统的时空特征,并灵活地表示平台实施的控制策略,从而实现对具有可观测市场响应的大规模网约车系统的分析,并促进控制策略的优化。作为对所提框架的应用示例,作者将其定制用于分析中国某大城市由滴滴出行运营的网约车系统,并对该系统进行了实证研究。在研究中,作者利用高粒度的实证数据对模型进行校准,并探讨了不同定价策略的优化,以实现平台的多种管理目标。本文提出的模型是首个以可处理的方式支持大规模网约车系统分析与优化的模型。
1. 研究背景
智能手机的普及催生了基于应用的网约车服务(如Uber、Lyft和滴滴出行)的快速发展。在提供服务的过程中,这些平台对网约车系统的运行具有前所未有的控制能力。然而,由于系统动态的复杂性,制定最佳控制策略是一项极具挑战性的任务。现有文献通常依赖于假设网约车系统处于稳态(Steady state)的经典模型来推导管理系统的各种监管、控制或政策。这些模型大多基于高度简化的市场或系统设置,鲜有考虑时空变化的复杂性: 假设市场条件是静态的,跨时段没有变化或相关性。然而,实际的网约车系统会受到随时间变化的供需相互作用的影响,导致系统状态瞬息万变。因此,为了更好地应对真实网约车系统的运营需求,需要能够适应系统动态和空间异质性的模型或方法。
1.1 研究现状&文章贡献
- 尽管一些动态模型已追踪网约车系统中乘客、空车和载客车辆数量的变化,但这些模型通常针对整体市场构建,未考虑空间异质性
- 近年来,强化学习方法越来越受到关注,用于帮助网约车平台优化在线匹配和调度策略,这些研究将系统动态解构为马尔可夫决策过程,并通过指定的数据驱动方法估计策略值。然而,这些方法的“黑箱”性质使得生成的策略在推广性上效果有限。
- 本文采取了另一种路径,提出了一个基于流体动力学的广义网约车系统建模框架,该框架严格遵循其时空动态特性构建。由于框架物理结构的透明性,其在定制和更新时具有高度的可移植性,并且可以被纳入优化模型中,为系统制定最优的运营策略。
2. 数学模型
2.1 基于流体动力学的广义系统框架
假设城市被划分为 N N N个区域,网约车平台管理着一组附属司机,为客户提供从一个区域 i i i到另一个区域 j j j的服务。设 W W W为乘客需求的起论点对集合 (OD对)。定义从 i i i到 j j j的乘客为类型 − ( i , j ) -(i, j) −(i,j) 的乘客,且 − ( i , j ) ∈ W -(i, j)\in W −(i,j)∈W。记相关变量如下:
- a i j c ( t ) a_{i j}^c(t) aijc(t) :在 t t t时在 i i i区域累积的类型 − ( i , j ) -(i, j) −(i,j) 乘客数量;
- m i j ( t ) m_{i j}(t) mij(t) :在 t t t时在 i i i区域被匹配的类型 − ( i , j ) -(i, j) −(i,j) 乘客数量;
- q i j c ( t ) q_{i j}^c(t) qijc(t) :在 t t t时刻尚末匹配的类型 − ( i , j ) -(i, j) −(i,j) 乘客数量。
这些变量之间的关系满足以下守恒方程:
a
i
j
c
(
t
)
=
m
i
j
(
t
)
+
q
i
j
c
(
t
)
,
∀
(
i
,
j
)
∈
W
a_{i j}^c(t)=m_{i j}(t)+q_{i j}^c(t), \quad \forall(i, j) \in W
aijc(t)=mij(t)+qijc(t),∀(i,j)∈W
与
q
i
j
c
(
t
)
q_{i j}^c(t)
qijc(t)不同,
w
i
j
q
(
t
)
w_{i j}^q(t)
wijq(t) 表示服务请求中的摩擦,即在
t
t
t时刻类型
−
(
i
,
j
)
-(i, j)
−(i,j) 的乘客平均需要等待的时间:
a
i
j
c
(
t
)
=
m
i
j
(
t
+
w
i
j
q
(
t
)
)
,
∀
(
i
,
j
)
∈
W
a_{i j}^c(t)=m_{i j}\left(t+w_{i j}^q(t)\right), \quad \forall(i, j) \in W
aijc(t)=mij(t+wijq(t)),∀(i,j)∈W
定义
d
i
j
(
t
)
d_{i j}(t)
dij(t) 为在
t
t
t时类型
−
(
i
,
j
)
-(i, j)
−(i,j) 的乘客被送达
j
j
j区域的累积数量,
w
i
j
s
(
t
)
w_{i j}^s(t)
wijs(t) 表示服务时间(包括接送时间和车上时间)。累积匹配量与送达量的关系为:
d
i
j
(
t
)
=
∫
t
0
t
δ
m
i
j
(
τ
)
⋅
1
(
τ
+
w
i
j
s
(
τ
)
≤
t
)
d
τ
,
∀
(
i
,
j
)
∈
W
d_{i j}(t)=\int_{t_0}^t \delta m_{i j}(\tau) \cdot 1\left(\tau+w_{i j}^s(\tau) \leq t\right) d \tau, \quad \forall(i, j) \in W
dij(t)=∫t0tδmij(τ)⋅1(τ+wijs(τ)≤t)dτ,∀(i,j)∈W
其中
δ
m
i
j
(
τ
)
\delta m_{i j}(\tau)
δmij(τ) 是在
τ
\tau
τ时刻新匹配的类型
−
(
i
,
j
)
-(i, j)
−(i,j) 的乘客数量。
在每个区域中,空闲司机的来源包括:外部到达的司机;完成服务后留在当前区域的司机;从其他区域巡游过来的司机。
记
e
i
(
t
)
e_i(t)
ei(t)和
a
i
d
(
t
)
a_i^d(t)
aid(t)分别为到
t
t
t时外部到达和所有到达
i
i
i区域的空闲司机累积量;设
c
k
l
(
t
)
c_{k l}(t)
ckl(t) 为
k
→
l
k \rightarrow l
k→l 的巡游司机数量,则空闲司机的进入关系为:
a
i
d
(
t
)
=
∑
j
:
(
j
,
i
)
∈
W
d
j
i
(
t
)
+
∑
k
:
(
k
,
i
)
∈
W
c
c
k
i
(
t
)
+
e
i
(
t
)
,
∀
i
∈
N
a_i^d(t)=\sum_{j:(j, i) \in W} d_{j i}(t)+\sum_{k:(k, i) \in W_c} c_{k i}(t)+e_i(t), \quad \forall i \in N
aid(t)=j:(j,i)∈W∑dji(t)+k:(k,i)∈Wc∑cki(t)+ei(t),∀i∈N
对于
i
i
i区域的空闲司机,他们可以保持空闲,匹配乘客,离线或巡游至其他区域。定义
q
i
d
(
t
)
q_i^d(t)
qid(t) 为
i
i
i区域
t
t
t时刻的空闲司机数量,
b
i
(
t
)
b_i(t)
bi(t)为到
t
t
t时在
i
i
i区域离线的司机数量,另有守恒关系:
a
i
d
(
t
)
=
q
i
d
(
t
)
+
∑
j
:
(
i
,
j
)
∈
W
m
i
j
(
t
)
+
b
i
(
t
)
+
∑
k
:
(
i
,
k
)
∈
W
c
c
i
k
(
t
)
,
∀
i
∈
N
a_i^d(t)=q_i^d(t)+\sum_{j:(i, j) \in W} m_{i j}(t)+b_i(t)+\sum_{k:(i, k) \in W_c} c_{i k}(t), \quad \forall i \in N
aid(t)=qid(t)+j:(i,j)∈W∑mij(t)+bi(t)+k:(i,k)∈Wc∑cik(t),∀i∈N
上述方程适用于一般非拼车的网约车系统,揭示了乘客和司机流量的内在交互动态,并可用于跟踪时空网络中的因果关系。
2.2 系统动态的统计特性
在平台控制策略下,网约车系统的动态受随机性影响,但由于大数法则的作用,其统计特性可用来描述系统行为:
- 需求函数:乘客的需求受匹配等待时间,接送时间和价格的影响:
E [ δ a i j c ( t ) ] δ t = D i j ( w i j q ( t ) , w i j p ( t ) , P i j ( t ) , t ) \frac{\mathbb{E}\left[\delta a_{i j}^c(t)\right]}{\delta t}=D_{i j}\left(w_{i j}^q(t), w_{i j}^p(t), P_{i j}(t), t\right) δtE[δaijc(t)]=Dij(wijq(t),wijp(t),Pij(t),t)
其中, w i j q ( t ) , w i j p ( t ) w_{i j}^q(t), ~ w_{i j}^p(t) wijq(t), wijp(t) 分别是平均匹配时间和接送时间, P i j ( t ) P_{i j}(t) Pij(t) 是动态价格。 - 匹配函数:平台的匹配动态可用多对一匹配函数
M
i
j
M_{i j}
Mij 描述:
E [ δ m i j ( t ) ] δ t = M i j ( q i d ( ⋅ ) , q i c ( ⋅ ) , A i ( t ) ) \frac{\mathbb{E}\left[\delta m_{i j}(t)\right]}{\delta t}=M_{i j}\left(q_i^d(\cdot), q_i^c(\cdot), A_i(t)\right) δtE[δmij(t)]=Mij(qid(⋅),qic(⋅),Ai(t))
A i ( t ) A_i(t) Ai(t) 表示平台在 i i i 区域的匹配策略。 - 司机的移动:空闲司机的移动由区域间巡游率
C
i
j
C_{i j}
Cij 和离线率
B
i
B_i
Bi 决定:
E [ δ c i j ( t ) ] δ t = C i j ( q i d ( t ) , R i ( t ) , t ) E [ δ b i ( t ) ] δ t = B i ( q i d ( t ) , R i ( t ) , t ) \begin{aligned} & \frac{\mathbb{E}\left[\delta c_{i j}(t)\right]}{\delta t}=C_{i j}\left(q_i^d(t), R_i(t), t\right) \\ & \frac{\mathbb{E}\left[\delta b_i(t)\right]}{\delta t}=B_i\left(q_i^d(t), R_i(t), t\right) \end{aligned} δtE[δcij(t)]=Cij(qid(t),Ri(t),t)δtE[δbi(t)]=Bi(qid(t),Ri(t),t)
R i ( t ) R_i(t) Ri(t) 表示平台对空闲司机的干预措施。
2.3 广义流体框架
基于以上的统计关系,论文采用流体近似,将离散的乘客和司机视为连续流体,将随机性替换为均值,从而得到具有解析性的系统动态模型。流体近似虽然牺牲了部分精度,但提供了连续可微的数学框架,便于分析和优化。
结合上述两个部分,最终的广义流体模型由以下方程组表示:
a
i
j
c
(
t
)
=
m
i
j
(
t
)
+
q
i
j
c
(
t
)
,
∀
(
i
,
j
)
∈
W
a
i
j
c
(
t
)
=
m
i
j
(
t
+
w
i
j
q
(
t
)
)
,
∀
(
i
,
j
)
∈
W
a
i
d
(
t
)
=
∑
j
:
(
j
,
i
)
∈
W
d
k
i
(
t
)
+
∑
k
:
(
k
,
i
)
∈
W
c
c
k
i
(
t
)
+
e
i
(
t
)
,
∀
i
∈
N
a
i
d
(
t
)
=
q
i
d
(
t
)
+
∑
j
:
(
i
,
j
)
∈
W
m
i
j
(
t
)
+
b
i
(
t
)
+
∑
k
:
(
i
,
k
)
∈
W
c
c
i
k
(
t
)
,
∀
i
∈
N
d
i
j
(
t
)
=
∫
1
(
τ
+
w
i
j
s
(
τ
)
⩽
t
)
⋅
d
m
i
j
(
τ
)
,
∀
(
i
,
j
)
∈
W
w
i
j
s
(
t
)
=
w
i
j
p
(
t
)
+
w
i
j
l
(
t
+
w
i
j
p
(
t
)
)
,
∀
(
i
,
j
)
∈
W
w
i
j
p
(
t
)
=
T
i
j
(
m
i
(
⩽
t
)
,
q
i
c
(
⩽
t
)
,
q
i
d
(
⩽
t
)
,
A
i
(
t
)
,
t
)
,
∀
(
i
,
j
)
∈
W
d
a
i
j
c
(
t
)
d
t
=
D
i
j
(
w
i
j
q
(
t
)
,
w
i
j
p
(
t
+
w
i
j
q
(
t
)
)
,
P
i
j
(
t
)
,
t
)
,
∀
(
i
,
j
)
∈
W
d
m
i
j
(
t
)
d
t
=
M
i
j
(
m
i
(
⩽
t
)
,
q
i
c
(
⩽
t
)
,
q
i
d
(
⩽
t
)
,
A
i
(
t
)
)
,
∀
(
i
,
j
)
∈
W
d
c
i
j
(
t
)
d
t
=
C
i
j
(
q
i
d
(
t
)
,
R
i
(
t
)
,
t
)
,
∀
(
i
,
j
)
∈
W
c
d
b
i
(
t
)
d
t
=
B
i
(
q
i
d
(
t
)
,
R
i
(
t
)
,
t
)
,
∀
i
∈
N
\begin{aligned} & a_{i j}^c(t)=m_{i j}(t)+q_{i j}^c(t), \quad \forall(i, j) \in \mathcal{W} \\ & a_{i j}^c(t)=m_{i j}\left(t+w_{i j}^q(t)\right), \quad \forall(i, j) \in \mathcal{W} \\ & a_i^d(t)=\sum_{j:(j, i) \in \mathcal{W}} d_{k i}(t)+\sum_{k:(k, i) \in \mathcal{W}^c} c_{k i}(t)+e_i(t), \quad \forall i \in \mathcal{N} \\ & a_i^d(t)=q_i^d(t)+\sum_{j:(i, j) \in \mathcal{W}} m_{i j}(t)+b_i(t)+\sum_{k:(i, k) \in \mathcal{W}^c} c_{i k}(t), \quad \forall i \in \mathcal{N} \\ & d_{i j}(t)=\int \mathbb{1}\left(\tau+w_{i j}^s(\tau) \leqslant t\right) \cdot \mathrm{d} m_{i j}(\tau), \quad \forall(i, j) \in \mathcal{W} \\ & w_{i j}^s(t)=w_{i j}^p(t)+w_{i j}^l\left(t+w_{i j}^p(t)\right), \quad \forall(i, j) \in \mathcal{W} \\ & w_{i j}^p(t)=T_{i j}\left(m_i(\leqslant t), \boldsymbol{q}_i^c(\leqslant t), \quad q_i^d(\leqslant t), \mathcal{A}_i(t), t\right), \quad \forall(i, j) \in \mathcal{W} \\ & \frac{\mathrm{d} a_{i j}^c(t)}{\mathrm{d} t}=D_{i j}\left(w_{i j}^q(t), w_{i j}^p\left(t+w_{i j}^q(t)\right), \mathcal{P}_{i j}(t), t\right), \quad \forall(i, j) \in \mathcal{W} \\ & \frac{\mathrm{d} m_{i j}(t)}{\mathrm{d} t}=M_{i j}\left(m_i(\leqslant t), \quad \boldsymbol{q}_i^c(\leqslant t), \quad q_i^d(\leqslant t), \quad \mathcal{A}_i(t)\right), \quad \forall(i, j) \in \mathcal{W} \\ & \frac{\mathrm{d} c_{i j}(t)}{\mathrm{d} t}=C_{i j}\left(q_i^d(t), \mathcal{R}_i(t), t\right), \quad \forall(i, j) \in \mathcal{W}^c \\ & \frac{\mathrm{~d} b_i(t)}{\mathrm{d} t}=B_i\left(q_i^d(t), \quad \mathcal{R}_i(t), t\right), \quad \forall i \in \mathcal{N} \end{aligned}
aijc(t)=mij(t)+qijc(t),∀(i,j)∈Waijc(t)=mij(t+wijq(t)),∀(i,j)∈Waid(t)=j:(j,i)∈W∑dki(t)+k:(k,i)∈Wc∑cki(t)+ei(t),∀i∈Naid(t)=qid(t)+j:(i,j)∈W∑mij(t)+bi(t)+k:(i,k)∈Wc∑cik(t),∀i∈Ndij(t)=∫1(τ+wijs(τ)⩽t)⋅dmij(τ),∀(i,j)∈Wwijs(t)=wijp(t)+wijl(t+wijp(t)),∀(i,j)∈Wwijp(t)=Tij(mi(⩽t),qic(⩽t),qid(⩽t),Ai(t),t),∀(i,j)∈Wdtdaijc(t)=Dij(wijq(t),wijp(t+wijq(t)),Pij(t),t),∀(i,j)∈Wdtdmij(t)=Mij(mi(⩽t),qic(⩽t),qid(⩽t),Ai(t)),∀(i,j)∈Wdtdcij(t)=Cij(qid(t),Ri(t),t),∀(i,j)∈Wcdt dbi(t)=Bi(qid(t),Ri(t),t),∀i∈N
结合平台在定价
P
\mathcal{P}
P,匹配
A
\mathcal{A}
A 和调度
R
\mathcal{R}
R 策略中的设定,一个网约车系统的动态过程
Ω
\Omega
Ω 可用以下10元组过程表示,并作为上述系统的解:
Ω
P
,
A
,
R
≜
{
a
i
j
c
(
t
)
,
m
i
j
(
t
)
,
q
i
j
c
(
t
)
,
w
i
j
q
(
t
)
,
d
i
j
(
t
)
,
e
i
(
t
)
,
a
i
d
(
t
)
,
q
i
d
(
t
)
,
c
i
k
(
t
)
,
b
i
(
t
)
∣
∀
i
∈
N
,
(
i
,
j
)
∈
W
,
t
∈
T
,
(
i
,
k
)
∈
W
c
}
\Omega_{\mathcal{P}, \mathcal{A}, \mathcal{R}} \triangleq\left\{\left.\begin{array}{ccc} a_{i j}^c(t), & m_{i j}(t), & q_{i j}^c(t), \\ w_{i j}^q(t), & d_{i j}(t), & \\ e_i(t), & a_i^d(t), & q_i^d(t), \\ c_{i k}(t), & b_i(t) & \end{array} \right\rvert\, \forall i \in \mathcal{N},(i, j) \in \mathcal{W}, t \in \mathcal{T}, \quad(i, k) \in \mathcal{W}^c\right\}
ΩP,A,R≜⎩
⎨
⎧aijc(t),wijq(t),ei(t),cik(t),mij(t),dij(t),aid(t),bi(t)qijc(t),qid(t),
∀i∈N,(i,j)∈W,t∈T,(i,k)∈Wc⎭
⎬
⎫
3. 模型参数化与校准
本部分将提出的广义建模框架定制为一个适用于真实网约车系统的实证模型。作者选择由滴滴出行在中国某大城市运营的网约车系统进行分析。该城市被划分为 27 个区域,包括 24 个空间服务区域(社区)和3个服务点(2个火车站和1个机场)。同时,为了便于模型校准,作者将上述框架转化为离散时间的对应形式,并根据实证观测数据和物理洞察对特性函数进行参数化。
作者所使用的数据涵盖了2019年夏季8周(从6月24日到8月11日)内的服务记录。考虑到市场条件的高波动性(尤其是在高峰期),作者选择五分钟为模型校准的粒度。假设司机和乘客的状态转换仅发生在每个时间间隔的开始,并且在该时间间隔内系统条件保持不变。在这种离散时间的背景下,作者重新定义 t t t为时间区间,而不是时间戳。状态变量(例如 q i j c ( t ) q_{i j}^c(t) qijc(t) 和 q i d ( t ) q_i^d(t) qid(t))现在表示时间 t t t开始时的系统状态,而带有增量符号的变量(例如 Δ a i j c ( t ) \Delta a_{i j}^c(t) Δaijc(t) 和 Δ a i d ( t ) ) \left.\Delta a_i^d(t)\right) Δaid(t))表示时间 t t t内的增量。以下对实证模型的各组成部分进行参数化,校准和验证。
3.1 流体传播与守恒
首先,流量守恒关系可以自然地改写成以下形式:
q
i
j
c
(
t
+
1
)
=
q
i
j
c
(
t
)
+
Δ
a
i
j
c
(
t
)
−
Δ
m
i
j
c
(
t
)
,
∀
(
i
,
j
)
∈
W
q
i
d
(
t
+
1
)
=
q
i
d
(
t
)
+
Δ
a
i
d
(
t
)
−
∑
j
:
(
i
,
j
)
∈
W
Δ
m
i
j
d
(
t
)
−
Δ
b
i
(
t
)
−
∑
j
:
(
i
,
j
)
∈
W
c
Δ
c
i
j
(
t
)
,
∀
i
∈
N
Δ
a
i
d
(
t
)
=
∑
j
:
(
j
,
i
)
∈
W
Δ
d
j
i
(
t
)
+
∑
j
:
(
j
,
i
)
∈
W
c
Δ
c
j
i
(
t
)
+
Δ
e
i
(
t
)
,
∀
i
∈
N
Δ
d
i
j
(
t
)
=
∑
τ
∈
T
1
(
τ
+
w
i
j
p
(
τ
)
+
w
i
j
l
(
τ
+
w
i
j
p
(
τ
)
)
=
t
)
⋅
Δ
m
i
j
d
(
τ
)
,
∀
(
i
,
j
)
∈
W
Δ
m
i
j
d
(
t
)
=
η
i
j
s
(
t
)
⋅
Δ
m
i
j
c
(
t
)
,
∀
(
i
,
j
)
∈
W
\begin{aligned} & q_{i j}^c(t+1)=q_{i j}^c(t)+\Delta a_{i j}^c(t)-\Delta m_{i j}^c(t), \quad \forall(i, j) \in \mathcal{W} \\ & q_i^d(t+1)=q_i^d(t)+\Delta a_i^d(t)-\sum_{j:(i, j) \in \mathcal{W}} \Delta m_{i j}^d(t)-\Delta b_i(t)-\sum_{j:(i, j) \in \mathcal{W}^c} \Delta c_{i j}(t), \quad \forall i \in \mathcal{N} \\ & \Delta a_i^d(t)=\sum_{j:(j, i) \in \mathcal{W}} \Delta d_{j i}(t)+\sum_{j:(j, i) \in \mathcal{W}^c} \Delta c_{j i}(t)+\Delta e_i(t), \quad \forall i \in \mathcal{N} \\ & \Delta d_{i j}(t)=\sum_{\tau \in \mathcal{T}} \mathbb{1}\left(\tau+w_{i j}^p(\tau)+w_{i j}^l\left(\tau+w_{i j}^p(\tau)\right)=t\right) \cdot \Delta m_{i j}^d(\tau), \quad \forall(i, j) \in \mathcal{W} \\ & \Delta m_{i j}^d(t)=\eta_{i j}^s(t) \cdot \Delta m_{i j}^c(t), \quad \forall(i, j) \in \mathcal{W} \end{aligned}
qijc(t+1)=qijc(t)+Δaijc(t)−Δmijc(t),∀(i,j)∈Wqid(t+1)=qid(t)+Δaid(t)−j:(i,j)∈W∑Δmijd(t)−Δbi(t)−j:(i,j)∈Wc∑Δcij(t),∀i∈NΔaid(t)=j:(j,i)∈W∑Δdji(t)+j:(j,i)∈Wc∑Δcji(t)+Δei(t),∀i∈NΔdij(t)=τ∈T∑1(τ+wijp(τ)+wijl(τ+wijp(τ))=t)⋅Δmijd(τ),∀(i,j)∈WΔmijd(t)=ηijs(t)⋅Δmijc(t),∀(i,j)∈W
其中空闲司机的外部到达量
Δ
e
i
(
t
)
\Delta e_i(t)
Δei(t) 和乘客的送达时间
w
i
j
l
(
t
)
w_{i j}^l(t)
wijl(t) 是直接从实证数据中提取或估计的外生参数;最后的关系式新增了匹配数量的分解,其中匹配元组
{
m
i
j
}
\left\{m_{i j}\right\}
{mij} 被划分为司机
{
m
i
j
d
}
\left\{m_{i j}^d\right\}
{mijd} 和乘客
{
m
i
j
c
}
\left\{m_{i j}^c\right\}
{mijc} ,以适应拼车服务下的不平衡匹配数量。参数
η
i
j
s
(
t
)
(
≤
1
)
\eta_{i j}^s(t)(\leq 1)
ηijs(t)(≤1) 表示OD对的折扣比率,用于描述拼车服务对需求的影响。在作者的实证分析中,每个司机连续完成的拼车任务被视为一个"增强型"单人任务,行程起点为最早的乘客上车点,终点为最晩的乘客下车点。折扣比率通过单人任务数与原始需求数的比值计算得出。
3.2 输入函数的参数化与校准
为了全面捕捉系统动态,作者对流体模型中的五个输入函数(2.3中后5个)进行参数化和校准。
- 接送时间函数:匹配后乘客的接送时间定义为区域内空闲司机数量的函数:
w i p ( t ) = α i ( t ) ⋅ [ q i d ( t ) ] γ i ( t ) , ∀ i ∈ N , t ∈ T w_i^p(t)=\alpha_i(t) \cdot\left[q_i^d(t)\right]^{\gamma_i(t)}, \quad \forall i \in N, t \in T wip(t)=αi(t)⋅[qid(t)]γi(t),∀i∈N,t∈T
其中参数 α i \alpha_i αi 和 γ i \gamma_i γi 是需校准的时间相关常数。理论研究表明,接送时间通常服从幂函数形式。作者的校准将服务区域分为"普通区域"和"服务点",分别对其进行处理。 - 需求函数:每个时间间隔
t
t
t 的需求
Δ
a
i
j
c
(
t
)
\Delta a_{i j}^c(t)
Δaijc(t) 校准为:
Δ a i j c ( t ) = B i j ( t ) ⋅ exp ( β q w i j q ( t ) + β p w i j p ( t ) + β f P i j ( t ) ) , ∀ ( i , j ) ∈ W , t ∈ T \Delta a_{i j}^c(t)=B_{i j}(t) \cdot \exp \left(\beta_q w_{i j}^q(t)+\beta_p w_{i j}^p(t)+\beta_f P_{i j}(t)\right), \quad \forall(i, j) \in W, t \in T Δaijc(t)=Bij(t)⋅exp(βqwijq(t)+βpwijp(t)+βfPij(t)),∀(i,j)∈W,t∈T
其中 B i j ( t ) B_{i j}(t) Bij(t) 表示潜在需求, β \beta β 是用户对匹配时间,接送时间和价格的敏感性向量。 - 匹配函数:匹配数量
Δ
m
i
j
d
(
t
)
\Delta m_{i j}^d(t)
Δmijd(t) 定义为:
Δ m i j d ( t ) = min ( 1 , q i d ( t ) − q i 0 ∑ k : ( i , k ) ∈ W η i k s ( t ) q i k c ( t ) ) ⋅ η i j s ( t ) q i j c ( t ) , ∀ ( i , j ) ∈ W , t ∈ T \Delta m_{i j}^d(t)=\min \left(1, \frac{q_i^d(t)-q_i^0}{\sum_{k:(i, k) \in W} \eta_{i k}^s(t) q_{i k}^c(t)}\right) \cdot \eta_{i j}^s(t) q_{i j}^c(t), \quad \forall(i, j) \in W, t \in T Δmijd(t)=min(1,∑k:(i,k)∈Wηiks(t)qikc(t)qid(t)−qi0)⋅ηijs(t)qijc(t),∀(i,j)∈W,t∈T - 区域迁移与离线率:空闲司机的迁移率和离线率分别为:
Δ c i j ( t ) = q i d ( t ) ⋅ ϕ i j ( t ) ⋅ ↓ ⊢ R i j ( t ) ) , Δ b i ( t ) = q i d ( t ) ⋅ ψ i ( t ) \left.\Delta c_{i j}(t)=q_i^d(t) \cdot \phi_{i j}(t) \cdot \downarrow \vdash R_{i j}(t)\right), \quad \Delta b_i(t)=q_i^d(t) \cdot \psi_i(t) Δcij(t)=qid(t)⋅ϕij(t)⋅↓⊢Rij(t)),Δbi(t)=qid(t)⋅ψi(t)
将上述参数化后的模型应用于滴滴数据,并验证其对真实系统的描述能力。作者比较了模型预测值与实际观测值(如司机活跃数量和乘客送达率),结果表明模型在宏观动态上的表现良好。此外,作者通过对OD对的匹配和送达数据进行细粒度分析,进一步验证了模型在不同时间间隔和区域的预测能力。为了确保校准和分析的可信性,作者选择每周的样本集中在周一凌晨4点到周五凌晨4点这一时间段,最终得到32个重复的服务周期。以下的所有实证分析都基于这种典型的日常设置进行,即从工作日凌晨4点开始的一个典型服务周期。
4. 策略优化的求解
借助嵌入在流体模型中的控制变量,构建基于系统动态的优化模型来寻求政策改进是概念上直接的,即:
max
P
,
A
,
R
Z
=
∑
(
i
,
j
)
∈
W
,
t
∈
T
ϕ
i
j
(
t
)
⋅
m
i
j
(
t
)
\max _{\mathcal{P}, \mathcal{A}, \mathcal{R}} Z=\sum_{(i, j) \in \mathcal{W}, t \in \mathcal{T}} \phi_{i j}(t) \cdot m_{i j}(t)
P,A,RmaxZ=(i,j)∈W,t∈T∑ϕij(t)⋅mij(t)
其中,平台通过调整定价策略
P
\mathcal{P}
P,匹配策略
A
\mathcal{A}
A 和调度策略
R
\mathcal{R}
R,来在特定的管理目标下改善系统性能;
ϕ
i
j
(
t
)
\phi_{i j}(t)
ϕij(t) 表示每次完成需求的价值度量。需要注意的是,这种乘法目标函数
Z
Z
Z 具有很大的灵活性,可以适配不同的管理目标。例如,当设定
ϕ
i
j
(
t
)
=
1
\phi_{i j}(t)=1
ϕij(t)=1 时,优化目标为最大化系统吞吐量;若令
ϕ
i
j
(
t
)
=
P
(
t
)
\phi_{i j}(t)=\mathcal{P}(t)
ϕij(t)=P(t) ,则为一个以收入最大化为目标的平台。匹配流量
m
i
j
(
t
)
m_{i j}(t)
mij(t) 需满足由系统动态定义的关系。尽管优化目标看起来很简单,但困难在于如何求解最终的这个大规模问题,其中包含高度非线性的约束以及可能的整数变量。
因此,本部分提出了一种启发式算法,将整体问题分解为四个子问题(模块),每个模块对应于迭代求解过程中的一个步骤(见流程图)。
- 流量再平衡模块
给定策略和行程需求,该模块通过前向传播方式解决双边匹配和流量传播问题。换句话说,固定需求可以打破市场条件在不同时期间的循环依赖关系,从而通过时空网络的单向滚动来推导流量传播。
模块步骤包括:
- 初始化骑手和司机队列以及配送情况;
- 计算匹配流量并更新队列;
- 计算区域间的司机迁移流量,并更新下一时段队列;
- 更新乘车时间和未来配送情况。
- 匹配分配模块
该模块确定每个时间段的匹配数量(如
{
m
i
j
c
(
t
)
}
\left\{m_{i j}^c(t)\right\}
{mijc(t)})。为了完全还原行程需求,还需计算骑手的平均等待时间和接载时间。这可以通过解决以下线性规划问题实现:
max
π
c
∑
t
,
s
∈
T
ϕ
(
s
−
t
)
⋅
π
i
j
c
(
t
,
s
)
\max _{\pi_c} \sum_{t, s \in T} \phi(s-t) \cdot \pi_{i j}^c(t, s)
πcmaxt,s∈T∑ϕ(s−t)⋅πijc(t,s)
约束条件如下:
∑
t
∈
T
π
i
j
c
(
t
,
s
)
≤
m
i
j
c
(
s
)
,
∀
s
∈
T
∑
s
∈
T
π
i
j
c
(
t
,
s
)
≤
a
i
j
c
(
t
)
,
∀
t
∈
T
π
i
j
c
(
t
,
s
)
≥
0
,
且当
t
>
s
时
π
i
j
c
(
t
,
s
)
=
0
,
∀
t
,
s
∈
T
\begin{gathered} \sum_{t \in T} \pi_{i j}^c(t, s) \leq m_{i j}^c(s), \forall s \in T \\ \sum_{s \in T} \pi_{i j}^c(t, s) \leq a_{i j}^c(t), \forall t \in T \\ \pi_{i j}^c(t, s) \geq 0, \text { 且当 } t>s \text { 时 } \pi_{i j}^c(t, s)=0, \forall t, s \in T \end{gathered}
t∈T∑πijc(t,s)≤mijc(s),∀s∈Ts∈T∑πijc(t,s)≤aijc(t),∀t∈Tπijc(t,s)≥0, 且当 t>s 时 πijc(t,s)=0,∀t,s∈T
其中,
ϕ
(
s
−
t
)
\phi (s-t)
ϕ(s−t)是一个关于时间间隔
s
−
t
s-t
s−t 严格递减的价值函数。
3. 边际效应模块
该模块利用以下网络流线性规划问题(NF)量化不同流量(如骑手到达、匹配、司机调度等)的边际价值:
目标函数:
max
q
c
,
q
d
,
Δ
d
,
Δ
m
c
,
Δ
m
d
,
Δ
c
Z
=
∑
(
i
,
j
)
∈
W
,
t
∈
T
ϕ
i
j
(
t
)
⋅
m
i
j
d
(
t
)
\max _{q^c, q^d, \Delta d, \Delta m^c, \Delta m^d, \Delta c} Z=\sum_{(i, j) \in W, t \in T} \phi_{i j}(t) \cdot m_{i j}^d(t)
qc,qd,Δd,Δmc,Δmd,ΔcmaxZ=(i,j)∈W,t∈T∑ϕij(t)⋅mijd(t)
约束条件包括:
- 乘客队列更新:
q i j c ( t + 1 ) = q i j c ( t ) + a i j c ( t ) − m i j c ( t ) , ∀ ( i , j ) ∈ W q_{i j}^c(t+1)=q_{i j}^c(t)+a_{i j}^c(t)-m_{i j}^c(t), \forall(i, j) \in W qijc(t+1)=qijc(t)+aijc(t)−mijc(t),∀(i,j)∈W - 司机队列更新:
q ^ i d ( t ) = q i d ( t ) + ∑ j : ( j , i ) ∈ W d j i ( t ) + e i ( t ) − ∑ j : ( i , j ) ∈ W m i j d ( t ) , ∀ i ∈ N q i d ( t + 1 ) = q ^ i d ( t ) − b i ( t ) − ∑ j : ( i , j ) ∈ W c c i j ( t ) + ∑ j : ( j , i ) ∈ W c c j i ( t ) , ∀ i ∈ N \begin{gathered} \hat{q}_i^d(t)=q_i^d(t)+\sum_{j:(j, i) \in W} d_{j i}(t)+e_i(t)-\sum_{j:(i, j) \in W} m_{i j}^d(t), \forall i \in N \\ q_i^d(t+1)=\hat{q}_i^d(t)-b_i(t)-\sum_{j:(i, j) \in W_c} c_{i j}(t)+\sum_{j:(j, i) \in W_c} c_{j i}(t), \forall i \in N \end{gathered} q^id(t)=qid(t)+j:(j,i)∈W∑dji(t)+ei(t)−j:(i,j)∈W∑mijd(t),∀i∈Nqid(t+1)=q^id(t)−bi(t)−j:(i,j)∈Wc∑cij(t)+j:(j,i)∈Wc∑cji(t),∀i∈N
- 匹配和配送约束:
d i j ( t ) = ∑ τ ∈ T 1 ( τ + w i j s ( τ ) = t ) ⋅ m i j d ( τ ) , ∀ ( i , j ) ∈ W m i j d ( t ) = η i j s ( t ) ⋅ m i j c ( t ) , ∀ ( i , j ) ∈ W \begin{gathered} d_{i j}(t)=\sum_{\tau \in T} 1\left(\tau+w_{i j}^s(\tau)=t\right) \cdot m_{i j}^d(\tau), \forall(i, j) \in W \\ m_{i j}^d(t)=\eta_{i j}^s(t) \cdot m_{i j}^c(t), \forall(i, j) \in W \end{gathered} dij(t)=τ∈T∑1(τ+wijs(τ)=t)⋅mijd(τ),∀(i,j)∈Wmijd(t)=ηijs(t)⋅mijc(t),∀(i,j)∈W
- 策略改进模块
定义所有流量的增量为 Δ f \Delta f Δf,策略调整的增量为 Δ P \Delta P ΔP,则优化问题可表示为:
目标函数:
max
Δ
P
,
Δ
f
ψ
f
⋅
Δ
f
+
f
⋅
Ψ
(
Δ
P
)
\max _{\Delta P, \Delta f} \psi_f \cdot \Delta f+f \cdot \Psi(\Delta P)
ΔP,Δfmaxψf⋅Δf+f⋅Ψ(ΔP)
约束条件:
Δ
f
=
∂
f
∂
P
⋅
Δ
P
∥
K
⋅
Δ
f
∥
≤
ν
\begin{gathered} \Delta f=\frac{\partial f}{\partial P} \cdot \Delta P \\ \|K \cdot \Delta f\| \leq \nu \end{gathered}
Δf=∂P∂f⋅ΔP∥K⋅Δf∥≤ν
其中,
ψ
f
\psi_f
ψf表示边际价值,
Ψ
(
⋅
)
\Psi (\cdot)
Ψ(⋅) 表示策略调整对流量的价值变化,
K
K
K 和
ν
\nu
ν 用于约束调整范围。
基于上述推导,策略优化的具体解决流程如下(参见流程图):
1.初始化定价
P
P
P ,匹配
A
A
A ,调度
R
R
R 以及行程需求
Δ
a
c
\Delta a^c
Δac 。
2.执行流量再平衡模块(FB)以推导平衡流模式和接载时间,并计算目标值 Z ^ \hat{Z} Z^ 。
3.解决匹配分配问题(MA),更新行程需求 a ^ c \hat{a}^c a^c 。
4.解决网络流问题(NF),获取不同操作/策略的边际价值。
5.求解策略改进问题(PI),获得新策略 P ^ , A ^ , R ^ \hat{P}, \hat{A}, \hat{R} P^,A^,R^ 。
6.若行程需求变化符合收玫条件 ( ∥ Δ a c − Δ a ^ c ∥ < ϵ a ) \left(\left\|\Delta a^c-\Delta \hat{a}^c\right\|<\epsilon_a\right) (∥Δac−Δa^c∥<ϵa) :
- 若 Z ^ \hat{Z} Z^ 高于当前最佳值,则更新"最佳"策略;
- 若策略调整楅度满足收敛条件,则停止搜索并返回"最佳"策略。
- 否则,将当前策略与新策略的线性组合作为下一轮的输入,重复上述步骤。
5. 定价政策的反事实分析
5.1 吞吐量最大化的定价策略
首先,作者研究最大化系统吞吐量的定价策略。系统吞吐量被定义为单位时间内成功将乘客送达目的地的数量,这是衡量网约车系统生产能力的重要指标。对于乘客行程长度相对均匀的系统,吞吐量与服务车辆的占用时间成正比。目标函数如下:
max
P
Z
=
∑
(
i
,
j
)
∈
W
,
t
∈
T
m
i
j
d
(
t
)
\max _P Z=\sum_{(i, j) \in W, t \in T} m_{i j}^d(t)
PmaxZ=(i,j)∈W,t∈T∑mijd(t)
作者比较了四种不同的定价方案:
- 固定定价:价格结构不随时间和位置变化;
- 动态定价:价格随时间段动态调整;
- 空间定价:价格随乘客的出发地变化;
- OD(起终点)定价:价格根据起点和终点的组合进行调整。
在后续实验中,允许价格在现行价格的基础上进行调整,范围在 15%折扣至50%加价 之间。实验在平均工作日的早高峰时段(6:00-10:00 AM)进行(参见第3.3节典型工作日的数据处理方式)。所有数值实验均使用上述解决流程,算法在400至500次迭代内成功收敛,每次迭代约耗时6秒。
吞吐量的衡量标准是司机的总占用时间和占用时间百分比(即在服务期间司机的利用率)。结果(见下图)表明:
- 随着定价策略的复杂性增加,系统吞吐量逐步提高。
- 与固定定价相比,动态定价可增加 2.68% 的总乘客行程时间;进一步采用空间定价时,该数值提升至 3%以上。
- 驾驶员的利用率也从 49.8% 提升至 51.3%。
- 动态定价的策略
下图a显示了动态定价策略的价格调整系数(“加价比率”)。在非高峰时段,平台建议降低价格以吸引更多乘客,而在早高峰(例如8:00-8:30 AM),则提高价格以缓解需求压力。这种策略与文献中提出的“野鹅追逐”(wild goose chases)现象的应对策略一致,即通过抑制需求减少高峰时段的供需失衡(参见 Castillo et al., 2018; Xu et al., 2020)。此外,图b比较了动态定价与固定定价下的空驶车辆百分比。动态定价在大多数时间段内降低了空驶率,但在高峰时段略有增加。这种差异表明动态定价策略有效缓解了非高峰时段的资源浪费,同时在高峰时段维持了更高的供需匹配效率。
- 空间定价的策略
下图展示了早高峰时段的空间定价策略。较暗的颜色代表更高的价格调整系数。结果表明:
- 在大多数时间和区域内,平台倾向于降低价格以提高系统吞吐量;
- 在高峰时段,中心城区的某些区域需要提高价格以应对供应短缺。
下图还显示了服务点(例如铁路车站)与其周边区域的定价差异。在高峰时段,尽管周边区域因供应短缺而提高了价格,服务点内部的价格却保持折扣,表明其供应始终充足。
5.2 收入最大化的定价政策
作者进一步研究了一个平台优化定价策略以最大化总服务收入的案例。下图比较了四种定价方案的两个性能指标:蓝色柱状图表示网约车市场的总服务收入,橙色折线表示完成的总订单量。
如图所示,更高水平的定价差异化可以显著提高平台的收益。仅允许时间维度上的价格差异化就能使服务收入增加 22.4%,而最优的基于起终点(OD-specific)的定价相比当前固定价格条件可提高 27.6% 的收入。
另一方面,在收入增加的同时,服务的订单数量却不一定随之增加。从图中可以看到,允许收入最大化的平台实施时间依赖的定价可能导致订单量减少 14%。平台可以通过战略性地提高价格来服务更少的乘客,但获得更高的收入。事实上,在作者的分析中,平台大多数时间和区域内都会选择以最大加价比率定价,仅在少数情况下例外。这一反事实分析表明,目前平台采用的定价结构并未在这一特定市场中实现收入最大化,而通过时间和空间上的价格差异化实现收入最大化,将以牺牲市场的社会福利和消费者剩余为代价。
6. 总结与展望
该流体框架在数学可操作性和行为真实感之间取得了良好的平衡,能够帮助服务提供商快速回答“如果……会怎样”的问题,并优化其战略运营决策。目前的框架主要适用于垄断市场,在该市场中,网约车平台专注于最大化自身的业务目标。未来的一个有意义的扩展是模拟包含多个服务提供商的竞争性网约车市场。这一扩展可以结合乘客和司机的战略行为,例如多平台使用和信息共享,并分析单个平台在不同市场力量下的应对策略。
此外,该框架还可以扩展以捕捉网约车服务与其他交通方式(如私家车和公共交通)以及相关设施(如停车场和专用上下车点)之间的交互作用。一个重要的考量是纳入网约车车辆在运营中产生的交通拥堵效应,这可以通过利用最近的网络宏观基本图(network macroscopic fundamental diagrams)的研究进展来实现,例如 Xu et al. (2017) 和 Ramezani and Nourinejad (2018) 的研究。最终形成的框架将能够支持政府机构在网约车服务监管、拥堵收费以及利用网约车解决公共交通首末一公里问题等应用中的规划实践和政策制定。
参考文献:
Zhengtian Xu, Yafeng Yin, Xiuli Chao, Hongtu Zhu, Jieping Ye, A generalized fluid model of ride-hailing systems,
Transportation Research Part B: Methodological, Volume 150, 2021, Pages 587-605.