编者按
在本系列文章中,我们对顶刊《Transportation Science》于2025年1月份发布的文章进行了精选,并总结其基本信息,旨在帮助读者快速洞察行业最新动态。本月内容既探讨出行细节,如出发时间选择,也着眼大型运输系统,班轮航运的脱碳燃料抉择与网络布局,多模式联运聚焦定价联盟优化,还有机器人分拣应对电商快递需求波动策略,为各行业发展出谋划策。
推荐文章1
● 题目:A Two-Stage Iteration Method for Solving the Departure Time Choice Problem
一种解决出发时间选择问题的两阶段迭代方法
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/trsc.2024.0599
● 作者:Ren-Yong Guo, Hai Yang, Hai-Jun Huang
● 发布时间:2025-01-08
● 摘要:
We discuss the numerical solution of the departure time choice problem. The non–quasi-monotone of the travel cost vector function is first proved to address the study motivation. A two-stage iteration method is then proposed to effectively solve the problem in a single origin-destination (OD) pair network with parallel links, in which departure time and route choices of commuters are involved. A two-stage iteration method is then proposed to effectively solve the problem in a single origin-destination (OD) pair network with parallel links, in which departure time and route choices of commuters are involved. We analytically reveal why the iteration method can solve the problem and theoretically prove the convergence, that is, the iteration process finally achieves at a user equilibrium (UE) state. The iteration method is then extended to a single link network with heterogeneous users in the values of travel time and schedule delay and the preferred arrival time. Furthermore, numerical analyses are conducted for the two networks to demonstrate the effectiveness of the iteration method for solving the departure time choice problem.
我们探讨了出发时间选择问题的数值求解方法。首先证明了出行成本向量函数的非拟单调性,以此来阐述研究动机。随后提出了一种两阶段迭代法,以有效解决单一起讫点(OD)对且存在平行路段的网络中的该问题,该问题涉及通勤者的出发时间选择和路线选择。接着再次提出了一种两阶段迭代法,以有效解决单一起讫点(OD)对且存在平行路段的网络中的该问题,该问题涉及通勤者的出发时间选择和路线选择。我们通过分析揭示了该迭代法能够解决此问题的原因,并从理论上证明了其收敛性,也就是说,迭代过程最终会达到用户均衡(UE)状态。然后,该迭代法被推广应用于单一路段网络,该网络中存在在出行时间价值、行程延误价值以及偏好到达时间方面具有异质性的用户。此外,我们对这两种网络进行了数值分析,以证明该迭代法在解决出发时间选择问题上的有效性。
推荐文章2
● 题目:Designing the Liner Shipping Network of Tomorrow Powered by Alternative Fuels
由替代燃料驱动的未来班轮航运网络设计
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/trsc.2023.0143
● 作者:Mikkel Lassen Johansen, Klaus Kähler Holst, Stefan Ropke
● 发布时间:2024-01-16
● 摘要:
The liner shipping industry is undergoing an extensive decarbonization process to reduce its 275 million tons of CO2 emissions as of 2018. In this process, the long-term solution is the introduction of new alternative maritime fuels. The introduction of alternative fuels presents a great set of unknowns. Among these are the strategic concerns regarding sourcing of alternative fuels and, operationally, how the new fuels might affect the network of shipping routes. We propose a problem formulation that integrates fuel supply/demand into the liner shipping network design problem. In addition, we wish to test the effect of designing a robust network under uncertain demand conditions because of the problem’s strategic nature and importance. We propose a problem formulation that integrates fuel supply/demand into the liner shipping network design problem. Here, we present a model to determine the production sites and distribution of new alternative fuels—we consider methanol and ammonia. For the network design problem, we apply an adaptive large neighborhood search combined with a delayed column generation process. In addition, we wish to test the effect of designing a robust network under uncertain demand conditions because of the problem’s strategic nature and importance. Therefore, our proposed solution method will have a deterministic and stochastic setup when we apply it to the second-largest multihub instance, WorldSmall, known from LINER-LIB. In the deterministic setting, our proposed solution method finds a new best solution to three instances from LINER-LIB. For the main considered WorldSmall instance, we even noticed a new best solution in all our tested fuel settings. In addition, we note a profit drop of 7.2% between a bunker-powered and pure alternative fuel–powered network. The selected alternative fuel production sites favor a proximity to European ports and have a heavy reliance on wind turbines. The stochastic results clearly showed that the found networks were much more resilient to the demand changes. Neglecting the perspective of uncertain demand leads to highly fluctuating profits.
截至 2018 年,班轮航运业正在经历大规模的脱碳进程,以减少其 2.75 亿吨的二氧化碳排放量。在这一进程中,长期的解决方案是引入新的替代性航海燃料。替代性燃料的引入带来了一系列未知因素。其中包括关于替代性燃料采购的战略考量,以及从运营角度来看,新燃料可能会如何影响航运路线网络。
我们提出了将燃料的供应与需求纳入班轮航运网络设计问题中的构想。此外,由于该问题具有战略性和重要性,我们希望测试在需求不确定的条件下设计一个稳健网络的效果。在此,我们提出一个模型,用于确定新替代性燃料(我们考虑的是甲醇和氨)的生产地点和分配方式。
对于网络设计问题,我们采用了自适应大邻域搜索方法,并结合了列生成延迟过程。此外,由于该问题具有战略性本质和重要性,我们希望测试在需求不确定的条件下设计一个稳健网络的效果。因此,当我们将所提出的解决方案应用于 LINER-LIB 中已知的第二大多枢纽实例 “WorldSmall” 时,该方法将包括确定性和随机性两种设定。在确定性设定下,我们提出的解决方案为 LINER-LIB 中的三个实例找到了新的最优解。对于主要考虑的 “WorldSmall” 实例,我们甚至在所有测试的燃料设定中都发现了新的最优解。此外,我们注意到,使用船用燃料的网络与使用纯替代性燃料的网络相比,利润下降了 7.2%。选定的替代性燃料生产地点倾向于靠近欧洲港口,并且严重依赖风力涡轮机。随机性结果清楚地表明,所找到的网络对需求变化的适应能力要强得多。忽视需求的不确定性会导致利润大幅波动。
推荐文章3
● 题目:Multimodal Transportation Pricing Alliance Design: Large-Scale Optimization for Rapid Gains
多模式交通定价联盟设计:快速收益的大规模优化
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/trsc.2023.0009
● 作者:Kayla Cummings, Vikrant Vaze, Özlem Ergun, Cynthia Barnhart
● 发布时间:2024-01-23
● 摘要:
Transit agencies have the opportunity to outsource certain services to established mobility-on-demand (MOD) providers. Such alliances can improve service quality, coverage, and ridership; reduce public sector costs and vehicular emissions; and integrate the passenger experience. To amplify the effectiveness of such alliances, we develop a fare-setting model that jointly optimizes fares and discounts across a multimodal network. We capture commuters’ travel decisions with a discrete choice model, resulting in a large-scale, mixed-integer, nonconvex optimization problem. To solve this challenging problem, we develop a two-stage decomposition with the pricing decisions in the first stage and a mixed-integer linear optimization of fare discounts and passengers’ travel decisions in the second stage. To solve the decomposition, we develop a new solution approach that combines customized coordinate descent, parsimonious second-stage evaluations, and interpolations using special ordered sets. This approach, enhanced by acceleration techniques based on slanted traversal, randomization, and warm-start, significantly outperforms algorithmic benchmarks. Different alliance priorities result in qualitatively different fare designs: flat fares decrease the total vehicle-miles traveled, whereas geographically informed discounts improve passenger happiness. The model responds appropriately to equity-oriented and passenger-centric priorities, improving system utilization and lowering prices for low-income and long-distance commuters. Our profit allocation mechanism improves the outcomes for both types of operators, thus incentivizing profit-oriented MOD operators to adopt transit priorities.
交通机构有机会将某些服务外包给成熟的按需出行(MOD)供应商,此类合作能够提升服务质量、扩大覆盖范围、增加客流量;降低公共部门成本与车辆排放;还能整合乘客出行体验。为增强这类合作的成效,我们研发了一种票价设定模型,可在多模式交通网络中联合优化票价与折扣。我们通过离散选择模型来捕捉通勤者的出行决策,这就产生了一个大规模的混合整数非凸优化问题。为解决这一极具挑战性的问题,我们设计了一种两阶段分解法,第一阶段进行定价决策,第二阶段对票价折扣及乘客出行决策进行混合整数线性优化。为求解该分解问题,我们开发了一种全新的求解方法,它融合了定制化的坐标下降法、简约的第二阶段评估以及利用特殊有序集进行的插值法。这种方法借助基于倾斜遍历、随机化和热启动的加速技术得到强化,其性能显著优于算法基准。不同的合作优先级会导致票价设计在性质上有所不同:统一票价可减少车辆总行驶里程,而基于地理位置的折扣则能提升乘客满意度。该模型能够对以公平为导向和以乘客为中心的优先级做出恰当回应,提高系统利用率,并为低收入和长途通勤者降低票价。我们的利润分配机制改善了两类运营商的收益,从而激励以盈利为导向的MOD运营商采纳公共交通优先策略。
推荐文章4
● 题目:Dynamic Robot Routing and Destination Assignment Policies for Robotic Sorting Systems
机器人分拣系统的动态机器人路径规划与目的地分配策略
● 原文链接:https://pubsonline.informs.org/doi/abs/10.1287/trsc.2023.0458
● 作者:Yuan Fang, René De Koster, Debjit Roy, Yugang Yu
● 发布时间:2025-01-27
● 摘要:
Robotic sorting systems (RSSs) use mobile robots to sort items by destination. An RSS pairs high accuracy and flexible capacity sorting with the advantages of a flexible layout. This is why several express parcel and e-commerce retail companies, who face heavy demand fluctuations, have implemented these systems. To cope with fluctuating demand, temporal robot congestion, and high sorting speed requirements, workload balancing strategies such as dynamic robot routing and destination reassignment may be of benefit. We investigate the effect of a dynamic robot routing policy using a Markov decision process (MDP) model and dynamic destination assignment using a mixed integer programming (MIP) model. To obtain the MDP model parameters, we first model the system as a semiopen queuing network (SOQN) that accounts for robot movement dynamics and network congestion. Then, we construct the MIP model to find a destination reassignment scheme that minimizes the workload imbalance. With inputs from the SOQN and MIP models, the Markov decision process minimizes parcel waiting and postponement costs and helps to find a good heuristic robot routing policy to reduce congestion. We show that the heuristic dynamic routing policy is near optimal in small-scale systems and outperforms benchmark policies in large-scale realistic scenarios. Dynamic destination reassignment also has positive effects on the throughput capacity in highly loaded systems. Together, in our case company, they improve the throughput capacity by 35%. Simultaneously, the effect of dynamic routing exceeds that of dynamic destination reassignment, suggesting that managers should focus more on dynamic robot routing than dynamic destination reassignment to mitigate temporal congestion.
机器人分拣系统(RSSs)利用移动机器人按目的地对物品进行分拣。RSS将高精度、灵活产能的分拣与灵活布局的优势相结合。这就是为什么一些面临需求大幅波动的快递和电商零售公司纷纷采用这些系统。为应对需求波动、机器人临时拥堵以及高分拣速度要求,诸如动态机器人路径规划和目的地重新分配等工作量平衡策略或许会有所帮助。我们采用马尔可夫决策过程(MDP)模型研究动态机器人路径规划策略的效果,并运用混合整数规划(MIP)模型研究动态目的地分配的效果。为获取MDP模型参数,我们首先将该系统建模为一个半开放排队网络(SOQN),该模型考虑了机器人的移动动态和网络拥堵情况。随后,我们构建MIP模型,以找出能将工作量不均衡程度降至最低的目的地重新分配方案。借助SOQN和MIP模型的输入,马尔可夫决策过程将包裹等待成本和延迟成本降至最低,并助力找到一种良好的启发式机器人路径规划策略,以缓解拥堵。我们发现,这种启发式动态路径规划策略在小规模系统中近乎最优,在大规模实际场景中也优于基准策略。动态目的地重新分配对高负荷系统的吞吐能力也有积极影响。在我们的案例公司中,两者结合使吞吐能力提高了35%。同时,动态路径规划的效果超过了动态目的地重新分配,这表明管理者应更多关注动态机器人路径规划,而非动态目的地重新分配,以缓解临时拥堵问题。