服务运营 | 精选摘要:医疗运营管理中的人工智能

编者按

人工智能正在与医疗运营深度融合。如今,AI不仅在医学影像检查中大放异彩,甚至在某些场景下能够充当临床医生的角色,直接为患者进行问诊。将人工智能引入医疗系统,有望有效缓解医护人力资源紧张的问题,并优化患者的就医体验。一个典型的应用场景是:AI可以迅速识别CT或核磁共振影像中的疑似阳性病例,优先安排放射科医生进行审核,从而让重症患者能够及时获得护理。尽管人工智能为医疗体系的运行和发展带来了诸多机遇,但同时也引发了不少管理层面的新问题。例如,一个关键问题是:AI诊断报告应在医生问诊前提供,还是在医生问诊后再提供?在本次推文中,我们整理了8篇关注医疗系统中AI应用的研究论文摘要。其中第一篇论文近期发表在《Management Science》上,通过实证研究发现:将AI诊断结果延迟至医生完成初步问诊后再提供,能够显著提升诊断准确性;而完全不参考AI的情况下,护理结果最差。而我们分享的第六篇论文则从理论建模的角度探讨了同一问题。与MS的实证研究不同,该论文的部分结论指出:在某些情境下,不使用AI反而可能带来更优的护理结果。这一发现与MS的结论形成了鲜明对比,凸显了AI在医疗系统中的影响具有高度情境依赖性,也提醒我们在推动AI落地时应更加关注机制设计与实际应用之间的细致平衡。

1. 实证文章:Designing AI-Based Work Processes: How the Timing of AI Advice Affects Diagnostic Decision Making

Jiamin Yin; , Kee Yuan Ngiam; , Sharon Swee-Lin Tan, Hock Hai Teo. Management Science, forthcoming

摘要:

虽然临床人工智能(AI)系统可以通过提供有力的第二意见来辅助医疗诊断决策,但如何将AI有效地整合到日常诊断流程中——例如在何时向医生呈现AI建议——仍然在很大程度上未被充分探讨。因此,我们的研究采用“有声思维”(think-aloud)方法,实验性地考察了AI建议的呈现时机如何影响诊断决策。医生在三种情境下进行医学诊断:事后建议(即在初步诊断后提供AI建议)、事前建议(即与临床信息同时提供AI建议)以及对照情境(不提供AI建议)。我们的研究结果表明,AI建议的呈现时机对诊断准确性和校准度有显著影响,其中事后建议条件表现最佳,而对照组表现最差。随后我们进行了多项分析,以剖析其背后的作用机制。研究发现,事后建议条件下诊断质量更高,可以归因于医生对临床信息的处理更为深入,以及对AI推理过程的认知参与更为积极。因此,相比于事前建议条件,处于事后建议条件下的参与者更能够辨别AI建议的正确与否。此外,他们在面对与自己初步诊断相矛盾的高质量AI建议时,也能获得更多益处。为进一步深入理解机制,我们还基于医生和临床案例的特征估计了异质性处理效应。我们的发现强调,在日常诊断流程中,在适当的时机呈现AI建议,对于实现AI建议与人类决策的有效协同至关重要。

2. 实证文章:Physician Adoption of AI Assistant

Ting Hou, Meng Li, Yinliang (Ricky) Tan, Huazhong Zhao. Manufacturing & Service Operations Management, 2024.

摘要:

问题定义:人工智能助手(AI assistants)——即可以为个人执行任务或提供服务的软件代理——是最具前景的AI应用之一。然而,在现实医疗环境中,服务提供者(如医生)对AI助手的采纳行为仍知之甚少。本文旨在研究AI助手的“智能程度”(即是否采用了机器学习智能)以及“透明度”(即医生是否被告知AI助手的存在)对其采纳行为的影响。方法与结果:我们与一家领先的医疗平台合作,开展了一项实地实验,比较了在“智能”与“自动化”AI助手、以及“透明”与“非透明”两种条件下,医生的采纳行为(包括采纳率和采纳时间)。研究发现,AI助手的智能程度可以显著提高采纳率并缩短采纳时间;而透明度则仅能缩短采纳时间。此外,AI透明度对采纳率的影响依赖于AI助手的智能程度:当AI助手不够智能时,提高透明度能促进采纳;而当AI助手本身已经较为智能时,透明度则不会进一步提升采纳率。管理启示:本研究为平台制定AI策略提供了指导建议。平台应优先提升AI助手的智能程度。如果提高智能的成本过高,则应选择提升AI的透明度,尤其是在AI助手尚不具备高度智能的情况下。

3. 实证文章:Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence

Ekaterina Jussupow, Kai Spohrer, Armin Heinzl, Joshua Gawlitza. Information Systems Research, 2021

摘要:

基于人工智能(AI)的系统正越来越多地用于支持医生进行诊断决策。然而,与基于规则的系统相比,这些AI系统的透明度较低,其错误也更难以预测。目前,大量研究致力于改进AI技术,并探讨其社会影响,但令人意外的是,对于AI系统辅助决策所带来的认知挑战却投入甚少。事实上,这类系统会使决策者更难评估AI建议的正确性,也更难判断应否采纳这些建议。由于我们对这类评估背后的认知机制了解甚少,本文采用归纳式研究方法,探索AI建议如何影响医生的决策过程。我们邀请共计68位初级医生和12位有经验的医生参与实验,在AI系统的协助下进行病例诊断。该系统有时提供正确的建议,有时提供错误的建议。我们基于有声思维协议、访谈以及问卷等定性数据,总结出五种决策模式,并构建了一个关于AI建议辅助医学诊断的决策过程模型。研究表明,医生在评估AI建议时,会运用二阶认知过程,即元认知,来监控并调控自己的推理过程。是否能够有效使用元认知,决定了医生能否从AI中获得真正的益处。具体而言,错误的诊断往往源于医生在使用以下两类元认知时存在缺陷:1. 与自身推理过程相关的自我监控;2. 与AI系统本身相关的系统监控。由于这些元认知能力不足,医生往往基于主观信念而非实际数据做出决策,或仅进行浅层的信息搜索。我们的研究首次提供了关于医生如何评估AI建议的元认知机制的视角,揭示了AI辅助决策中一个被忽视的重要方面:人类决策者在弥补技术错误中的关键作用。

4. 模型文章:When AI Is Not Enough: Reducing Diagnostic Errors with Radiologist Oversight

Junyang Cai, Noa Zychlinski. Service Science, forthcoming

摘要:

人工智能(AI)正日益普及,尤其是在医疗领域,正在重塑未来的决策过程。在放射科,AI通过对患者影像的快速分析,彻底改变了诊断方式。然而,AI误诊可能带来严重后果:例如,错误结果可能导致健康患者被不必要地标记为需治疗,而漏诊则可能导致严重疾病未被及时发现和干预。为降低此类风险,大多数诊断系统采用AI分析与放射科医生复核相结合的模式:AI首先对病例进行分类,随后放射科医生对AI的初步诊断进行复核与确认或修改。为了实现有效的放射科排程,需要同时考虑假阴性与假阳性的可能性及其代价,以及AI的敏感性和特异性等特征。为应对AI预测的局限性,我们建立了一个多服务器排队模型,分别设置疑似阳性和疑似阴性病例的队列。借助流体近似方法,我们推导出一种基于指数的排程策略,是对传统$$c\mu/\theta$$规则的改进版本。该策略在调度和资源分配中充分考虑了AI特性和潜在的误分类。我们提出的策略自然地融入了锚定效应,即放射科医生在面对被AI误诊的病例时会投入更多时间。由于锚定效应被内嵌于各类病例的优先指数中,它可能改变原有的服务优先级,从而显著影响系统整体表现。此外,为防止即便被诊断为阴性的患者也出现过长等待时间,我们进一步将模型扩展,纳入医院和监管机构制定的基于诊断结果的服务质量要求。数值实验结果表明,我们提出的策略在准确性和效率方面均优于常用的基准策略,凸显了其在提升医疗诊断质量和资源利用效率方面的巨大潜力。

5. 模型文章:Artificial Intelligence on Call: The Physician’s Decision of Whether to Use AI in Clinical Practice

Tinglong Dai, Shubhranshu Singh. Journal of Marketing Research, forthcoming.

摘要:

医生在医疗决策中越来越多地可以借助人工智能(AI)系统的辅助。本文探讨了医生在为患者制定治疗方案时是否选择使用辅助性AI系统的决策过程。使用AI可以帮助医生生成一个信息丰富的信号,从而减轻临床不确定性,但与此同时,也可能会在患者受到伤害时改变医生的法律责任。我们分析了两种在医生使用AI时决定其法律责任的患者保护机制:1. 现行机制:将AI信号作为依据,用于强化当前的医疗标准;2. 新兴机制:提议将AI信号本身作为新的医疗标准。研究表明,在这两种机制下,医生在低不确定性情境中都有动机使用AI,即使AI在这些情况下提供的价值有限。相反,在高不确定性情境中,即使AI本可以显著提高决策质量,医生也可能因潜在的法律责任而避免使用AI。此外,随着AI系统的精度提高,医生在某些类型患者身上的使用意愿可能反而会下降。我们还比较了医生在两种患者保护机制下的使用行为。结果显示,将AI信号作为新的医疗标准可以在某些情况下缓解医生对AI的过度使用或不足使用,但同时也可能加剧在其他患者群体中的使用失衡问题(即原本应使用而未使用,或不应使用却过度依赖AI)。这项研究揭示了AI技术发展与法律责任框架之间的复杂互动,以及这种互动如何影响医生对AI的采纳行为。

6. 模型文章:Using AI as Gatekeeper or Second Opinion: Designing Patient Pathways for AI-Augmented Healthcare

Tinglong Dai, Simrita Singh. Working Paper.

摘要:

截至2024年6月,美国食品药品监督管理局(FDA)已批准950种人工智能(AI)系统,其中大多数作为分类器,用于帮助筛查或诊断特定的疾病。然而,如何将AI更有效地整合进医疗工作流程,仍存在许多疑问,包括:AI究竟应作为守门人(决定哪些患者需要医生干预),还是作为第二意见(对医生诊断进行补充)?基于这一问题,本文建立了一个医疗系统模型,其中患者可以选择就诊于专家、AI系统,或两者兼顾。关键的设计问题是:患者应先接触AI还是先接触医生,分别对应AI作为守门人与第二意见的角色。我们构建了一个受到初始信号(或称锚点)影响的两阶段决策过程。与普遍观点相反,我们的研究表明:将AI作为守门人,并不必然会增加漏诊率;而将AI作为第二意见,虽然可以降低漏诊率,却可能会增加误报率(假阳性)。总体来看,在低风险情境中,守门人策略更优;而在高风险患者中,为了避免漏诊,应优先采用第二意见策略。值得注意的是,我们还发现,在中等风险患者(即不确定性最大的群体)中,有些情况下反而不应使用AI,这一结果挑战了AI在不确定性高时最具价值的普遍观点。最后,我们将该模型应用于青光眼诊断的案例中,数值模拟显示,通过优化患者就诊路径,可以实现显著的成本节约。我们的研究强调,AI在优化医疗资源分配、提升患者诊疗效果方面具有巨大潜力,也有助于推动联合国可持续发展目标的实现。

7. 模型文章:Algorithmic Bias and Physician Liability

Shujie Luan, Shubhranshu Singh, Tinglong Dai. Working paper.

摘要:

随着人工智能(AI)在临床决策中的应用日益广泛,算法偏见问题也日益受到关注,尤其体现在AI系统在不同患者群体中诊断准确率存在差异。为应对这一问题,美国医疗保险与医疗补助服务中心(CMS)引入了一项反偏见责任规则,对使用有偏见算法、导致错误医疗决策的医疗机构进行处罚。本文研究了这一责任规则对AI公司研发决策及医疗机构使用AI的决策所产生的影响。具体而言,AI公司需开发一个同时服务两个患者群体的算法,但使弱势群体达到与优势群体相同的准确率将带来更高的开发成本。随后,医疗提供者根据AI减少临床不确定性的能力与面临反偏见责任风险之间的权衡,决定是否以及如何使用该AI系统进行治疗决策。我们的研究发现,该责任规则可能诱导医疗机构在使用AI时出现新的偏差:他们可能整体上减少对AI的使用,且更容易忽视AI对弱势患者的建议。有趣的是,责任强度对AI使用的影响是非单调的:随着责任程度的提高,医疗机构起初会更少使用AI于弱势群体,但在责任进一步提高后,却可能转而依赖AI。此外,我们发现,强制要求AI在所有患者群体中实现相同的准确率可能会产生反效果,不利于所有患者的整体福祉。部分原因在于,这种强制可能导致医疗机构在弱势患者身上过度使用AI,从而产生新的风险。本研究强调,在推动AI公平性政策的同时,必须考虑政策对实际临床行为的复杂影响,避免形式上的平等带来实质上的损害。

8. 模型文章:Provider Payment Models for Generative AI in Healthcare

Elodie Adida, Tinglong Dai. Working Paper.

摘要:

问题定义:生成式人工智能(Generative AI, 简称 GenAI)工具,如环境监听,因其能整合多种数据格式并生成多模态输出,展现出革新医疗实践的巨大潜力。然而,GenAI在医疗领域的推广仍然受限,主要原因包括:需要高度定制化,以及缺乏合适的医疗支付模式。本文旨在探讨医疗支付机制如何影响GenAI工具的采用(下游)与开发质量(上游)。方法与结果:我们构建了一个理论模型,刻画GenAI工具开发者与医疗服务提供者之间的战略互动:开发者决定GenAI工具的质量与收费,医疗提供者则根据报销结构决定是否使用该工具。在当前不予报销的状态下,提供者仅在复杂病例中使用GenAI工具,导致其质量与采纳率双双处于次优水平。在按服务计费(fee-for-service)模式下,虽然使用更广泛,但当报销标准较高时,开发者反而会降低工具质量以节省成本;当报销较低时,虽然鼓励开发者提升质量,但无法实现社会最优使用水平。我们提出一种混合支付模式:将按服务计费与按价值付费(value-based payment)结合,发现要实现激励对齐,应基于GenAI工具自身的质量而非其下游医疗结果设定价值指标。更有意思的是,我们发现:随着开发成本的上升,实现激励对齐所需的最低fee-for-service反而会下降。管理启示:我们的分析框架为政策制定者和支付方提供理论基础,助其设计更有效的报销机制,以推动高质量GenAI工具的研发与应用。通过协调开发者与医疗服务提供者的激励,该机制可助力GenAI真正融入医疗实践,实现质量与可及性的双重优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值