从FT的性质上理解幅度调制与频谱搬移

1. AM-SC波时域表达式

  以抑制载频调幅(Amplitude Modulation with suppressed carrier, AM-SC)信号为例,设信号 e ( t ) e\left(t\right) e(t)的频谱为一个带限谱,最高频率为 ω m \omega_m ωm,大致表示其波形如下
在这里插入图片描述
使用载波频率为 ω c \omega_c ωc的正弦波作为AM-SC的载波,假定初相为 0 0 0,则得到AM-SC波表达式 a ( t ) a\left(t\right) a(t)
a ( t ) = A e ( t ) cos ⁡ ω c t \begin{equation} a\left( t \right) = Ae\left( t \right)\cos {\omega _c}t \end{equation} a(t)=Ae(t)cosωct
其中, A A A为载波的振幅。

2. 理解1:FT的频域卷积定理

  若要根据FT的频域卷积定理
F { y ( t ) } = F { x 1 ( t ) x 2 ( t ) } = 1 2 π X 1 ( j ω ) ∗ X 2 ( j ω ) \begin{equation} \mathcal{F}\left\{ {y\left( t \right)} \right\} = \mathcal{F}\left\{ {{x_1}\left( t \right){x_2}\left( t \right)} \right\} = \frac{1}{{2\pi }}{X_1}\left( {j\omega } \right)*{X_2}\left( {j\omega } \right) \end{equation} F{y(t)}=F{x1(t)x2(t)}=2π1X1()X2()
来得到AM-SC波 a ( t ) a\left(t\right) a(t)的表达式,则分别求得 e ( t ) e\left(t\right) e(t) A cos ⁡ ω c t A\cos {\omega _c}t Acosωct可以直接得到
{ F { e ( t ) } = E ( j ω ) F { A cos ⁡ ω c t } = A π [ δ ( ω + ω c ) + δ ( ω − ω c ) ] \left\{ \begin{align*} &\mathcal{F}\left\{ {e\left( t \right)} \right\} = E\left( {j\omega } \right) \\ &\mathcal{F}\left\{ {A\cos {\omega _c}t} \right\} = A\pi \left[ {\delta \left( {\omega + {\omega _c}} \right) + \delta \left( {\omega - {\omega _c}} \right)} \right] \end{align*} \right. {F{e(t)}=E()F{Acosωct}=Aπ[δ(ω+ωc)+δ(ωωc)]
从而根据式(2)的频域卷积定理,并结合一般函数与冲激函数运算的法则:乘积对采样,卷积对搬移,可以得到AM-SC波的FT频域表达式为
F { a ( t ) } = 1 2 π E ( j ω ) ∗ A π [ δ ( ω + ω c ) + δ ( ω − ω c ) ] = A 2 { E [ j ( ω + ω c ) ] + E [ j ( ω − ω c ) ] } \begin{align*} \mathcal{F}\left\{ {a\left( t \right)} \right\} &= \frac{1}{{2\pi }}E\left( {j\omega } \right)*A\pi \left[ {\delta \left( {\omega + {\omega _c}} \right) + \delta \left( {\omega - {\omega _c}} \right)} \right] \\ &= \frac{A}{2}\left\{ {E\left[ {j\left( {\omega + {\omega _c}} \right)} \right] + E\left[ {j\left( {\omega - {\omega _c}} \right)} \right]} \right\} \\ \end{align*} F{a(t)}=2π1E()Aπ[δ(ω+ωc)+δ(ωωc)]=2A{E[j(ω+ωc)]+E[j(ωωc)]}
则对应的 a ( t ) a\left(t\right) a(t)信号的幅度谱为
在这里插入图片描述
就是将原信号 e ( t ) e\left(t\right) e(t)的幅度谱从零频中心搬移到以 ± ω c \pm \omega_c ±ωc频率为中心的位置,而各频点的幅度大小则乘以 A / 2 A/2 A/2。若取 A = 1 A=1 A=1,则就是 e ( t ) e\left(t\right) e(t)的中心频率搬移到 ± ω c \pm \omega_c ±ωc处,且各频点的幅度减半。
  因而通过直接使用FT频域卷积定理的性质求出AM-SC波的频谱,则该方法对AM调制的理解其实就是来源于上面说到的冲激函数的运算法则,即:乘积对采样,卷积对搬移。就是在频域卷积中,将原信号的频谱 E ( j ω ) E\left(j\omega\right) E()与频域中的移位的冲激信号 δ ( ω ± ω c ) \delta\left(\omega\pm\omega_c\right) δ(ω±ωc)进行卷积,得到的频谱搬移。这是从计算上理解的AM与频谱搬移。通常这种理解方式可能是大多数的理解方式。

3. 理解2:FT的移频特性

  FT的移频特性是
x ( t ) e − j ω c t ⟷ F X [ j ( ω − ω c ) ] \begin{equation} x\left( t \right){e^{ - j{\omega _c}t}}\overset{\mathcal{F}}\longleftrightarrow X\left[ {j\left( {\omega - {\omega _c}} \right)} \right] \end{equation} x(t)ejωctFX[j(ωωc)]
同时通过欧拉公式,可以得到
cos ⁡ ω c t = e − j ω c t + e j ω c t 2 \begin{equation} \cos {\omega _c}t = \frac{{{e^{ - j{\omega _c}t}} + {e^{j{\omega _c}t}}}}{2} \end{equation} cosωct=2ejωct+ejωct
从而
a ( t ) = A 2 e ( t ) ( e − j ω c t + e j ω c t ) a\left( t \right) = \frac{A}{2}e\left( t \right)\left( {{e^{ - j{\omega _c}t}} + {e^{j{\omega _c}t}}} \right) a(t)=2Ae(t)(ejωct+ejωct)
那么根据式(3)的移频特性,同样可以得到
F { a ( t ) } = A 2 { E [ j ( ω + ω c ) ] + E [ j ( ω − ω c ) ] } \begin{equation} \mathcal{F}\left\{ {a\left( t \right)} \right\} = \frac{A}{2}\left\{ {E\left[ {j\left( {\omega + {\omega _c}} \right)} \right] + E\left[ {j\left( {\omega - {\omega _c}} \right)} \right]} \right\} \end{equation} F{a(t)}=2A{E[j(ω+ωc)]+E[j(ωωc)]}
  因此,这一方式的理解其实就是通过欧拉公式转化载波表达式,并使用移频特性得到AM-SC波的频谱。因而从这个特性的名字就可以看出来,移频特性的意义显然就是频谱的搬移,这是从FT性质上理解的AM本质就是频谱搬移

4. 参考资料

  1. 管致中, 夏恭恪, 孟桥. 信号与线性系统.上册[M]. 第6版. 北京: 高等教育出版社, 2015: 125-126, 137-138, 175-177.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值