【数模】主成分分析法

目录

一、主成分分析

        概念:从原始变量中导出少数几个主分量,使它们尽可能多地保留原始变量的信息,且彼此间互不相关

        常用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进行适当的解释

目的:

  1. 数据的压缩——处理指标与指标间相关性高的数据(剔除冗余的数据)
  2. 数据的解释

        数据降维处理可采用 主成分分析法(spss无)、因子分析法

数据处理的典型应用:

  • 补全数据(拟合、插值)
  • 异常值检测(识别后剔除)
  • 数据冗余(效率浪费、结果影响)

1.基本思想

        降维处理、浓缩处理(以两个变量为例)

         长短轴相差越大,降维也就越合理

         找出的新变量是原来变量的线性组合,叫做主成分

 各主成分 累计方差贡献率>80% 或 特征值>1

原来——众多具有一定相关性的变量

重新组合后——一组新的相互无关的综合变量

方差小——信息少

方差最大——第一主成分

两个变量——椭圆

多个变量——椭球

2.数学模型

  主成分分析两大检验(若多个变量相互独立或相关性很小,则不能进行主成分分析)

  • KMO检验(Kaiser-Meyer-Olkin)——检验变量之间的偏相关系数是否过小(>0.5)
  • Bartlett‘s检验——该检验的原假设是相关矩阵为单位阵(不相关)。若不能拒绝原假设,则不适合进行主成分分析(<0.05)

3.主成分分析的步骤

  1. 检验是否可以使用主成分分析法(KMO/Bartlett’s)
  2. 对原来的指标进行标准化处理,消除变量在水平和量纲上的影响
  3. 根据标准化后的数据矩阵求出相关系数矩阵
  4. 求出协方差矩阵的特征根和特征向量
  5. 确定主成分,并对各主成分所包含的信息给予适当的解释

二、主成分分析法与因子分析法的转换

        SPSS只有因子分析,所以需要进行转换

\frac{a_{ij}}{\sqrt{​{\lambda }}}=u_{ij}

\frac{a_{ij}}{SQR(\lambda )}

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
成分分析(Kernel Principal Component Analysis,简称KPCA)是一种无监督学习算,它可以用于降维和特征提取。与传统的成分分析(PCA)不同,KPCA可以处理非线性数据,使得数据可以更好地表示在低维空间中。 KPCA的基本思想是将原始数据映射到高维空间中,然后在高维空间中进行PCA。这样做的好处是,在高维空间中,非线性数据可以被线性分离。在高维空间中,我们可以通过计算数据的协方差矩阵来进行PCA,然后再将数据投影到低维空间中。 但是,直接将数据映射到高维空间中会导致计算量极大,需要大量的计算资源和时间。因此,KPCA采用核函数来进行映射,将原始数据映射到高维空间中,而不需要显式地计算高维空间中的特征向量和特征值。这样,我们可以在低维空间中进行PCA,从而实现降维。 KPCA的核函数有很多种,常用的有线性核函数、多项式核函数、高斯核函数等。其中,高斯核函数是最常用的核函数之一,它可以将原始数据映射到无限维的高维空间中。 KPCA的要步骤如下: 1. 计算核函数矩阵:对于给定的数据集,首先计算它们之间的核函数矩阵。 2. 中心化核函数矩阵:将核函数矩阵中每行和每列的均值都减去整个矩阵的均值,得到中心化核函数矩阵。 3. 计算特征值和特征向量:对中心化核函数矩阵进行特征值分解,得到特征值和特征向量。 4. 选择成分:选择前k个最大的特征值对应的特征向量作为成分,其中k是降维后的维数。 5. 降维:将原始数据映射到低维空间中,得到降维后的数据。 KPCA可以用于许多应用场景,例如图像处理、语音识别、式识别等。它可以帮助我们提取数据中的关键特征,从而提高型的性能和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值