- 博客(18)
- 收藏
- 关注
原创 从一次删除需求,理解 DDD 中的 Repository 职责
这个条件如果未来会变,它就不该出现在 Repository。会变的 → 放领域 / 业务层不会变的(如 tenantId、软删除)→ 可以放 Repository为什么“分层”不是为了好看,而是为了让变化发生时,你知道该改哪一层。
2025-12-19 11:34:02
260
原创 一次由「雪花 ID」引发的前后端联调踩坑记录
雪花 ID + 前端报错,不是雪花的问题,也不是数据库的问题,而是 JavaScript Number 精度限制导致的经典坑。而这个坑,如果你第一次做前后端联调,大概率也会踩到。
2025-12-19 11:33:04
927
原创 Redis使用与命名规范
❌ 禁止生产使用keys *✅ 使用明确前缀 + 语义化命名✅ 对象用 Hash,计数用 String,排序用 ZSet✅ 设置合理过期时间,避免内存泄漏✅ 业务 key 与缓存 key 分前缀区分。
2025-12-18 17:32:22
744
原创 Jenkins配置与实战
根据提示输入编号,切换到目标 Java 版本。下载 Linux x64 的。按照页面提示完成初始化配置。,最新版 Jenkins。
2025-12-18 17:31:43
244
原创 Stacked Autoencoder Based Multi-Omics Data Integration for Cancer Survival Prediction
该论文提出了一种基于堆叠自编码器的多组学数据整合方法 SAEsurv-net,用于癌症生存预测。通过两阶段降维和堆叠自编码器模型,有效解决了多组学数据的高维和异质性问题,实验结果表明该方法在多个癌症数据集上表现优于现有方法。
2025-03-10 20:18:07
982
原创 Integrating multi-omics data through deep learning for accurate cancerprognosis prediction
该篇论文使用去噪自编码器(DAE)处理高维多组学数据,获取隐层特征,减少数据噪声影响,增强模型鲁棒性。将 DAE 提取的特征输入 Cox 比例风险模型,评估患者的癌症风险。针对多组学数据获取困难的问题,使用 mRNA 数据训练 XGboost 模型拟合风险,提高模型的可解释性和临床适用性。通过实验分析各类型组学数据对预后预测的贡献,发现 mRNA 数据的贡献最大,单独使用时平均 C-index 值为 0.628,而 CNV 数据贡献最小。
2025-03-10 16:40:55
1254
原创 解决 torchtext.data.Field 被移除的办法
降低torchtext版本同时需要降pytorch版本以适配,高版本torchtext将Field方法移除了,只能采用降低版本的方法继续使用在新版本中移除的方法。
2024-10-12 23:03:16
589
原创 解决UserWarning: The NumPy module was reloaded
一种可能解决UserWarning: The NumPy module was reloaded的办法
2024-07-15 17:11:25
819
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1