基于tensorflow的运动鞋品牌识别

一、前期工作

1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

2. 导入数据

data_dir = 'F:/host/Data/运动鞋品牌识别数据/'

data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)

在这里插入图片描述

roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

在这里插入图片描述

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

  • tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "F:/host/Data/运动鞋品牌识别数据/train/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "F:/host/Data/运动鞋品牌识别数据/test/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

在这里插入图片描述

2. 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3. 再次检查数据

  • Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

在这里插入图片描述

4. 配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

使用prefetch()可显著减少空闲时间:

  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

在这里插入图片描述

四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:

  • initial_learning_rate(初始学习率):初始学习率大小。
  • decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
  • decay_rate (衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
  • staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。
# 设置初始学习率
initial_learning_rate = 0.0001

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

l e a r n i n g r a t e = i n i t i a l l e a r n i n g r a t e ∗ d e c a y r a t e ( s t e p / d e c a y s t e p s ) learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps) learningrate=initiallearningratedecayrate(step/decaysteps)

学习率大与学习率小的优缺点分析:

学习率大

  • 优点:
    • 1、加快学习速率。
    • 2、有助于跳出局部最优值。
  • 缺点:
    • 1、导致模型训练不收敛。
    • 2、单单使用大学习率容易导致模型不精确。

学习率小

  • 优点:
    • 1、有助于模型收敛、模型细化。
    • 2、提高模型精度。
  • 缺点:
    • 1、很难跳出局部最优值。
    • 2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

  • monitor: 被监测的数据。
  • min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
  • patience: 没有进步的训练轮数,在这之后训练就会被停止。
  • verbose: 详细信息模式。
  • mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
  • baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
  • estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 50

# 保存最佳模型参数
checkpointer = ModelCheckpoint('./model/运动鞋品牌识别_best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

3. 模型训练

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

在这里插入图片描述

五、模型评估

1. Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 指定图片进行预测

# 加载效果最好的模型权重
model.load_weights('./model/运动鞋品牌识别_best_model.h5')
from PIL import Image
import numpy as np

# 打开图像文件
img_path = "F:/host/Data/运动鞋品牌识别数据/test/nike/12.jpg"
img = Image.open(img_path)

# 将图像调整大小并转换为 TensorFlow 张量
image = tf.image.resize(np.array(img), [img_height, img_width])

# 添加批次维度
img_array = tf.expand_dims(image, 0)

# 进行预测
predictions = model.predict(img_array)

# 打印预测结果
print("预测结果为:", class_names[np.argmax(predictions)])

在这里插入图片描述

六、个人收获

在完成运动鞋品牌识别数据集的项目过程中,我获得了宝贵的实践经验和深刻的认识。首先,我学习了如何使用TensorFlow和Keras框架进行深度学习模型的构建和训练,包括设置GPU、导入和预处理数据、构建卷积神经网络(CNN)、配置动态学习率以及模型训练和评估的整个流程。

通过实践,我深入理解了数据预处理的重要性,如使用tf.keras.preprocessing.image_dataset_from_directory()函数加载数据集,以及如何通过调整buffer_size参数优化数据集的洗牌方法,从而提高模型训练的效率和效果。同时,我也认识到了模型过拟合的问题,并通过引入Dropout层来增强模型的泛化能力。

此外,我学习了如何使用ExponentialDecay函数来实现动态学习率调整,以及如何利用ModelCheckpointEarlyStopping回调函数来保存最佳模型并避免过长时间的训练。这些技术的应用显著提升了模型的性能和训练过程的效率。

最后,通过绘制训练和验证的损失与准确率图表,我学会了如何直观地评估模型的表现,并根据这些图表对模型进行进一步的调整和优化。整个项目不仅加深了我对深度学习理论的理解,也锻炼了我的实践技能,为我日后在人工智能领域的研究和工作打下了坚实的基础。

  • 0
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于tensorflow的地物分类识别是利用tensorflow深度学习框架进行地物分类的一种方法。通过构建卷积神经网络(CNN)模型,对遥感影像中的不同地物进行自动识别和分类。首先,我们需要收集大量的带有标签的地物影像数据作为训练集,并对数据进行预处理和特征提取。然后利用tensorflow框架搭建深度学习模型,训练网络使其能够识别和区分不同的地物类别,如建筑、植被、水体等。 与传统的方法相比,基于tensorflow的地物分类识别具有更高的准确性和稳定性。通过深度学习模型,我们可以充分利用地物影像中的各种特征信息,使分类结果更加精准和全面。此外,tensorflow的优良性能和灵活性也为地物分类识别提供了更多的可能性,能够更好地适应不同地理环境和数据类型的需求。 基于tensorflow的地物分类识别应用广泛,可以用于城市规划、环境监测、农业管理等领域。通过对地物进行精准的识别和分类,可以为相关部门提供更及时、准确的数据支持,帮助他们更好地进行决策和规划。同时,基于tensorflow的地物分类识别也有着较高的自动化程度,能够大大提高工作效率和减少人力成本。 总之,基于tensorflow的地物分类识别是一种先进的技术手段,具有重要的应用前景和发展潜力。随着深度学习技术的不断发展和完善,相信基于tensorflow的地物分类识别在未来会有更加广泛的应用和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值