机器学习——线性回归

 

线性回归          

 

梯度下降

目标函数:

                             

线性回归 寻找山谷的最低点,也就是我们的目标函数终点 (什么样的参数能使得目标函数达到极值点)

                                

下山分几步走呢?(更新参数)

(1):找到当前最合适的方向

(2):走那么一小步,走快了该”跌倒 ”了

这里相当于要对梯度进行小范围的计算,如果计算的大范围容易不收敛。

(3):按照方向与步伐去更新我们的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙有肥鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值