在公安数据侦查中,侦查思维的训练至关重要,它侧重于侦查途径和方法的选择与应用。侦查人员需要不断评估并选择最佳的侦查途径,以提高侦查效率。选择的标准在于数据的易采集性、易分析性,以及其反映案件事实的速度。
在侦查的早期阶段,侦查人员应寻找数据侦查的切入点,如确定某一类型数据或多种数据的关联性,这些数据能够揭示案件信息,有助于快速识别犯罪嫌疑人或确定其身份。多维数据融合侦查,通过信息互补,可以迅速发现线索或证据。随着侦查工作的深入,需要将数据信息与其他信息关联。
而数据侦查途径的选择是推进侦查工作的关键环节,其效果与侦查人员的专业水平、经验、逻辑思维能力、获取的数据类型和对已知案件信息的理解密切相关。对于已知的某一类型数据或多维数据,可以采用数据搜索法、数据碰撞法、数据挖掘法、数据画像法和社会网络关系分析法等方法来获取关键信息。
在使用数据搜索法时,应结合案件已知信息,选择合适的搜索词、图片和数据库,以获取关键信息。数据碰撞法需要了解数据碰撞的条件,如数据库的类型和时空限制,以确保得出有效的结果。数据挖掘法、数据画像法和社会网络关系分析法则更多依赖于软件或模型的建立。
如果缺乏软件或专业知识,无法建立模型,可通过人工方式将多个数据库关联分析,以获得关键线索。如数据画像法可通过视频数据、移动通信数据、网络数据、物流数据和公安平台数据等综合信息来描绘犯罪嫌疑人的特征。数据挖掘法则可以通过逻辑思维、关联分析和聚类分析等方法挖掘隐藏的信息。这些技能都需要通过大量的思维训练来培养。
因此,根据已知案件信息和选定的数据侦查途径,重点对数据进行分析训练是至关重要的,但同样存在大量人工的状态。
对此不妨思考在数据侦查中引入人工智能服务,去提升侦查效率和准确性。如:
在智能侦查系统中去集成人脸识别、步态识别、视频质量检测、车牌识别、GIS地图以及视频结构化模块,由此实现对特定目标的跨场景跟踪和可视化指挥调度。
在情报数据智能研判过程中,基于AI能力在机器视觉、数据挖掘等领域的应用,预测性侦查及回溯性侦查等针对性分析。
而相对数据搜索需求,AI可进行数据库、互联网、电子数据等搜索,通过实时关联比对目标数据与关联数据,获取关键信息。同样对于多维数据融合,则可通过串联不同类型的数据,形成“地毯”效应,链接不同类型的数据源,包括串并案分析、人物关系模型、嫌疑人异动检测和断点追踪模型等。
如果算力资源够用,可进行实时监测分析,融合AI算法可实时监测监控摄像头、网络数据等,及时发现异常行为,为侦查提供线索,包括对照片和视频中的人脸进行分析和比对,准确地识别目标人物的身份。还可以基于人工智能支持进行无人机现场勘验,捕捉不易察觉或侦查难度较高角落和细节。