cuDNN下载与安装

为了使用GPU运行python程序,进行深度学习,下载NVIDIA CUDA已成功。安装CUDA的方法详见:
https://blog.csdn.net/weixin_53762670/article/details/131845364

win-R输入cmd命令,调出命令窗口,输入:

nvcc --version

如果出现以下信息即为CUDA安装成功
在这里插入图片描述

安装cuDNN Archive

cuDNN 其实就是 CUDA 的一个补丁而已,专为深度学习运算进行优化的

下载cuDNN Archive

在官网中下载与CUDA对应版本的cuDNN Archive

https://developer.nvidia.com/rdp/cudnn-archive

我的CUDA是12.2.0,所以下载12.0x的
这里有很多cuDNN的版本可以选,选12.0x(对于我而言)最新版本的就可以了
在这里插入图片描述
在这里插入图片描述
在下载之前,需要注册NVIDIA账号
在这里插入图片描述
注册结束后就可以开始下载了
在这里插入图片描述

复制补丁到CUDA中

下载得到压缩包,并解压,得到cudnn-windows-x86_64-8.9.2.26_cuda12-archive,内容如下所示,将这三个文件夹复制到之前安装CUDA文件夹中,覆盖掉。
Alt
(我忘记了CUDA的安装文件夹了,当时选择的是默认安装路径,可以参考这张图)
Alt
Alt

配置环境

在CUDA中找到这四个文件夹的路径,并将其添加到环境变量path中
在这里插入图片描述
任务栏搜索“编辑系统环境变量”–“高级”–“环境变量”–“Path”在这里插入图片描述

检验安装是否成功

调出cmd命令窗口,cd命令到安装目录

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\demo_suite

在这里插入图片描述
分别执行bandwidthTest.exe和deviceQuery.exe

  1. 先执行bandwidthTest.exe
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\demo_suite>.\bandwidthTest.exe

在这里插入图片描述
这里显示result为pass,说明bandwidthTest.exe运行成功
2. 下面运行deviceQuery.exe

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\demo_suite>.\deviceQuery.exe

在这里插入图片描述
这里也能看到result为pass

至此,安装成功!

参考信息
https://blog.csdn.net/pengxiang1998/article/details/125343621

### 如何下载特定版本的 cuDNN 库 为了下载特定版本的 cuDNN 库,可以按照以下方式操作: #### 官方渠道获取 cuDNN NVIDIA 提供了一个开发者计划,允许用户通过注册并登录 NVIDIA 开发者网站来访问不同版本的 cuDNN 库。以下是具体流程[^1]: 1. **注册账户** 如果尚未拥有 NVIDIA 开发者账户,则需先前往 [NVIDIA Developer](https://developer.nvidia.com/) 注册一个免费账户。 2. **登录并导航至 cuDNN 页面** 登录后进入 [cuDNN 下载页面](https://developer.nvidia.com/cudnn),该页面会列出所有可用的 cuDNN 版本及其对应的 CUDA 支持情况。 3. **选择目标版本** 找到所需的 cuDNN 版本(例如适用于 CUDA 11.7 的 cuDNN),点击对应链接进行下载。 4. **验证兼容性** 确认所选 cuDNN 版本当前系统的 CUDA 驱动程序以及硬件设备匹配。如果 PyTorch 要求 CUDA 至少为 11.7,则应选择此版本相适应的 cuDNN 版本。 #### 替代资源查找旧版 cuDNN 对于某些较老版本的 cuDNN 文件,官方可能不再提供直接下载选项。此时可尝试以下途径: - 访问第三方镜像站点(注意安全性)。 - 使用存档工具如 `wget` 或脚本来抓取历史记录中的文件地址。 #### 示例代码:自动检测现有 CuDNN 并打印其版本号 可以通过 Python 编写一段简单的测试脚本来确认已安装cuDNN 是否满足需求: ```python import tensorflow as tf print(f"CUDA Version: {tf.sysconfig.get_build_info()['cuda_version']}") print(f"CuDNN Version: {tf.sysconfig.get_build_info()['cudnn_version']}") ``` 上述脚本利用 TensorFlow 获取构建时使用的 CUDA 和 cuDNN 版本信息[^2]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值