用Homer3将.nirs文件转化为.snirf文件

1. MATLAB准备

首先你需要下载好MATLAB,我使用的是MATLAB R2022b,下载教程参考:
【软件安装】(十)MATLAB R2022b完整安装教程(附安装包)
感谢作者码韵

2. 下载Homer3

下载地址
Homer3下载地址
下载好后解压,setpath将Homer3文件加入MATLAB路径中。
具体参考:
Homer3的安装
感谢作者洛神

3. 修改MATLAB的当前路径

刚安装好的MATLAB路径是默认在C盘如,如图所示:在这里插入图片描述
“DELL”是我的计算机用户名称,此时需要修改当前路径为放置.nirs文件的地方,具体来说就是:在命令行窗口中输入
下面展示一些 内联代码片

cd("你的文件路径")

如:
在这里插入图片描述
这样MATLAB的当前文件夹就会出现你存放的.nirs文件:
在这里插入图片描述

4. 激活Homer3

在命令行窗口输入:
下面展示一些 内联代码片

Homer3

【补充说明】
如果你同时装了Homer2和Homer3,在使用Homer3时,必须在setpath中将所有Homer3相关的文件移到顶端,否则命令行中会报错。

命令行窗口会出现:
在这里插入图片描述
同时回弹出窗口:
在这里插入图片描述
选择YES
你就会获得.snirf文件
在这里插入图片描述

完结!!!!撒花✿✿ヽ(°▽°)ノ✿

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值