
目录
1.原理简介
变异系数法是根据统计学方法计算得出系统各指标变化程度的方法,是直接利用各项指标所包含的信息,通过计算得到指标的权重,因此是一种客观赋权的方法。
变异系数法根据各评价指标当前值与目标值的变异程度来对各指标进行赋权,若某项指标的数值差异较大,能明确区分开各被评价对象,说明该指标的分辨信息丰富,因而应给该指标以较大的权重;反之,若各个被评价对象在某项指标上的数值差异较小,那么这项指标区分各评价对象的能力较弱,因而应给该指标较小的权重。
2.步骤详解
2.1 原始数据收集
假设一组数据中有m个指标,n条待评价样本,即一个n*m的矩阵,令其为X。其中xij表示第i行第j列的数据。

2.2 指标数据正向化
指标正向化的目的就是把所有的指标都转换为正向指标。
正向指标:又叫越大越优型指标,即该指标下的数据数值越大越好,例如成绩。
负向指标:又叫越小越优型指标,即该指标下的数据数值越小越好,例如排名。
对于正向指标:保持其原数据不变。

本文详细介绍了如何运用变异系数法计算指标权重,从原始数据收集、指标正向化到数据标准化,一步步揭示了如何根据指标变化程度赋予权重,以实现客观的评价体系。
最低0.47元/天 解锁文章
1789

被折叠的 条评论
为什么被折叠?



