剧本杀里感情本怎么写

本文探讨了感情类剧本杀,即情感本的流行原因,重点介绍了其写作技巧,包括情感分类、写作流程、人物塑造和线索设计,以及创作时需注意的避免强行煽情和保持玩家互动平衡的问题。作者推荐有兴趣深入学习的朋友参加春藤夏院的剧本杀写作课程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是感情类剧本杀?

感情类剧本杀,其实也就是情感本,这是主要“以情动人”的有一种剧本杀类型,我们业内人一般叫它“哭哭本”,也就是为了给玩家提供感动到落泪的情感体验的一种剧本杀。

这种剧本杀最近受到了越来越多玩家的喜欢,甚至可以说是现在剧本杀最受欢迎的类型。

为什么?

因为这种本子非常受女玩家的喜欢,试想一下:花前月下,暗恋表白,生离死别,互诉衷肠,这样的场景,在一个几个小时的剧本杀中就能全部体验一次,搁谁谁不心动?

毕竟,情感本可是玩家群体中出了名的“脱单利器”!

暗恋的人创造机会,让热恋情侣更加喜欢对方,还有比情感本更好的选择吗?

没有!也因为这样,情感本受到了市场的热捧,自然也是剧本杀作者的“必争之地”!

听起来很简单是不是?

但不掌握技巧,你会发现自己很难写出一部剧本杀作品,哪怕是相对难度比较低的情感本!让春藤夏院顶帅顶帅的老师教你几招剧本杀写本技巧!

2.感情类剧本杀写作技巧

情感本写作技巧汇总:

1)情感分类

亲情、友情、爱情、地域情、思乡情、家国情感......

也可以随机排列组合,一个情感本中同时包括多种情感。

2)情感本写作流程

(1)选题

确定剧本世界观,主题,如校园恋情、家庭亲情、师生之情、兄弟友情、闺蜜友情等等。

(2)故事

通过各种各样的故事丰富整个情感本剧本杀的内容,比如儿时回忆,过往经历,同甘共苦的遭遇,小红和小明的青梅竹马,家国破碎时的流民故事等等,只要是能够引起人的情感和情绪波动的故事,都是好故事。

(3)技巧

这里可以教大家一个情感本PKU创作公式——

过去 Past:过去的人、过去的景色、过去的痛苦、过去的甜蜜

杀人 Kill:误杀好人、杀人报仇、替天行道

理解 Understand:从不理解到理解,从隐藏到暴露,从含蓄到爆发

通过对这3方面的安排,借助细节描写,比如送给对方的礼物、比如第一次见面的羞涩、比如分别时候 的天气和车站人潮汹涌的场景等等,结合心理描写,自然能够把情感描写到位。

(4)人物

编写各个人物剧本,通过外貌、出身、经历、性格等等,塑造不同的人物,比如男的帅气逼人,女的脸若桃花,性格外向,脾气暴躁,性格内向,含蓄内敛等等,并且结合之前的故事和技巧,丰富人物的整个生平。

(5)线索

不光得有对故事、人物、案件的描写,同时也需要隐藏一些信息,能够引起玩家之间的互动或者相互探索,所以线索布置也是必不可少的。通常来说,线索分为3类:

案发线索,比如尸体线索;人物线索,比如角色秘密,所在组织,道具等等;以及传闻消息。

(6)组织者手册

这一步就是剧本杀写作的最后一步了,将所有的事情都收束归纳,最终形成组织者手册(也叫主持人手册,一个东西)。当然,组织者手册也是有特定格式的,这些都会在我们的线上课堂中讲到,感兴趣的可以联系我们小助理了解详情哦。

3.感情类剧本杀创作注意事项

(1)不要强行煽情

不要自我感动,要给玩家足够的情绪铺垫,不然强行煽情,安排给玩家不合适的台词,比如“我真的被你感动哭了、为了我你受苦了”,毫无铺垫和故事剧情,一上来就安排这个,这样的本子,不被喷才怪,你觉得呢?

(2)不要伤害平衡

应对不一样的场景,要确保玩家之间的互动深度,确保不会出现严重的边缘人物,影响玩家的体验。

最后,想和大家说的是,上面说的也只是剧本杀写作的一部分“干货”,短短一篇回答也很难说清楚剧本杀写作、剧本杀创作的全部妙招诀窍,如果你对剧本杀写作感兴趣的话,想通过剧本杀写作赚钱养家,春藤夏院剧本杀欢迎你来学习!

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值