文章目录
HashMap源码解析
简介
首先,我们先通过LinkedList注释来了解这个集合的性质。
Map接口的基于哈希表的实现。这个实现提供了所有可选的映射操作,并允许null值和null键。(HashMap类大致相当于Hashtable,只是它不同步并且允许null。)这个类对映射的顺序没有任何保证;特别是,它不能保证订单在一段时间内保持不变。这种实现为基本操作(get和put)提供了恒定的时间性能,假设散列函数在桶之间正确地分散了元素。对集合视图的迭代需要与HashMap实例的“容量”(bucket的数量)加上其大小(键值映射的数量)成比例的时间。因此,如果迭代性能很重要,那么不要将初始容量设置得太高(或负载系数设置得太低),这一点非常重要。HashMap的实例有两个影响其性能的参数:初始容量和负载因子。容量是哈希表中存储桶的数量,而初始容量只是创建哈希表时的容量。负载因子是在哈希表的容量自动增加之前允许其达到多满的度量。当哈希表中的条目数量超过负载因子和当前容量的乘积时,哈希表被重新哈希(即,重建内部数据结构),使得哈希表的桶数量大约是桶数量的两倍。一般来说,默认负载系数(.75)在时间和空间成本之间提供了一个很好的折衷。较高的值减少了空间开销,但增加了查找成本(反映在HashMap类的大多数操作中,包括get和put)。在设置其初始容量时,应考虑映射中的预期条目数及其负载系数,以最大限度地减少再散列操作的次数。如果初始容量大于最大条目数除以负载系数,则不会发生再灰操作。如果要在一个HashMap实例中存储许多映射,那么创建一个足够大的容量将使映射的存储效率高于根据需要执行自动重新哈希以扩展表。请注意,使用具有相同hashCode()的多个键肯定会降低任何哈希表的性能。为了减少影响,当键是可比较的时,此类可以使用键之间的比较顺序来帮助打破联系。请注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,并且至少有一个线程在结构上修改了该映射,则必须对其进行外部同步。(结构修改是指添加或删除一个或多个映射的任何操作;仅仅更改与实例已经包含的键相关联的值并不是结构修改。)这通常是通过对自然封装映射的某个对象进行同步来实现的。如果不存在这样的对象,则应使用Collections.synchronizedMap方法“包装”映射。这最好在创建时完成,以防止意外地对映射进行非同步访问:map m=Collections.synchronizedMap(new HashMap(…));这个类的所有“集合视图方法”返回的迭代器都是快速失效的:如果在迭代器创建后的任何时候,以迭代器自己的remove方法以外的任何方式对映射进行结构修改,迭代器将抛出ConcurrentModificationException。因此,面对并发修改,迭代器会快速而干净地失败,而不是冒着在未来不确定的时间出现任意、不确定行为的风险。请注意,迭代器的故障快速行为无法得到保证,因为一般来说,在存在不同步的并发修改的情况下,不可能做出任何硬保证。故障快速迭代器在尽力而为的基础上抛出ConcurrentModificationException。因此,编写依赖于此异常的正确性的程序是错误的:迭代器的故障快速行为应该只用于检测错误。
总结上述我们可以发现HashMap的特点:
- HashMap 是一个散列表,它存储的内容是键值对(key-value)映射
- 允许空键和空值(但空键只有一个,且放在第一位)
- 元素是无序的,而且顺序会不定时改变,即不会记录插入的顺序
key
用Set
存放,所以想做到 key 不允许重复,key
对应的类需要重写hashCode
和equals
方法- 底层实现是 链表数组,JDK 8 后又加了红黑树(重点学习)
- 不支持线程同步
- 实现了
Map
全部的方法
下来,我们看一下HashMap的族谱:
HashMap
继承了AbstractMap
,而AbstractMap
实现了Map
接口。HashMap
实现了Map
的全部方法。
Cloneable
:表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。Serializable
: 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输,非常方便。
常用方法
方法 | 描述 |
---|---|
put() | 往集合中添加元素,key 值不可重复,重复时会覆盖之前的 value 值 |
size() | 返回集合长度 |
get(key) | 获取对应 key 值的 value 值 |
clear() | 清除集合中的所有元素 |
values() | 返回一个新集合,获取集合中所有元素的 values |
keySet() | 返回一个新集合,获取集合中所有元素的 key |
remove() | 根据 key 或者 key-value 去除集合中元素,并分别返回 value 值和 Boolean 值 |
iterator() | 返回一个迭代器对象 |
entrySet() | 将 Map 集合每个 key-value 转换为一个 Entry 对象,并返回由所有的 Entry 对象组成的 Set 集合 |
containsKey() | 判断集合中是否含右指定的 key 值 |
源码解析
底层数据结构:jdk1.8以前 vs jdk1.8以后
jdk1.8以前
JDK1.8 之前HashMap
底层是数组和链表结合在一起使用也就是 链表散列。HashMap
通过 key
的 hashCode
经过扰动函数处理过后得到 hash
值,然后通过(n - 1) & hash
判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key
是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。所谓扰动函数指的就是 HashMap
的 hash
方法。使用 hash
方法也就是扰动函数是为了防止一些实现比较差的 hashCode()
方法 换句话说使用扰动函数之后可以减少碰撞。
static int hash(int h) {
// ^:按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。
举个例子,便于理解:
将关键字序列{1 13 12 34 38 33 27 22} 散列存储到散列表中。散列函数为:H(key)=key mod 11,处理冲突采用链地址法,求在等概率下查找成功和查找不成功的平均查找长度
1 mod 11=1,所以数据1是属于地址1
13 mod 11=2,所以数据13是属于地址2
12 mod 11=1,所以数据12也是属于地址1(这个数据是数据1指针的另一个新数据)
34 mod 11=1,所以数据34是属于地址1(这个数据是数据12指针的另一个新数据)
38 mod 11=5,所以数据38是属于地址5
33 mod 11=0,所以数据33是属于地址0
27 mod 11=5,所以数据27是属于地址5,(这个数据是数据38指针的另一个新数据)
22 mod 11=0,所以数据22是属于地址0,(这个数据是数据33指针的另一个新数据)
总结拉链法的实现步骤如下:
- 计算 key 的 hashValue
- 根据 hashValue 值定位到 table[hashIndex] 。( table[hashIndex] 是一条链表Node)
- 若 table[hashValue] 为空则直接插入,不然则添加到链表末尾
jdk1.8以后
当链表长度大于阈值(默认为 8)时,调用treeifyBin()方法。该方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 resize() 方法对数组扩容。如果由于删除或者其他原因调整了大小,当红黑树的节点小于或等于 6 个以后,又会恢复为链表形态。
static final int hash(Object key) {
int h;
// key.hashCode():返回散列值也就是hashcode
// ^:按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
链表+红黑树:
属性解析:
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于等于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于等于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 阈值(容量*负载因子) 当实际大小超过阈值时,会进行扩容
int threshold;
// 负载因子
final float loadFactor;
}
loadFactor
负载因子loadFactor
负载因子是控制数组存放数据的疏密程度,loadFactor
越趋近于 1,那么 数组中存放的数据(entry
)也就越多,也就越密,也就是会让链表的长度增加,loadFactor
越小,也就是趋近于 0,数组中存放的数据(entry
)也就越少,也就越稀疏。loadFactor
太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor
的默认值为 0.75f 是官方给出的一个比较好的临界值。给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量超过了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到rehash
、复制数据等操作,所以非常消耗性能。thresholdthreshold = capacity * loadFactor
,当Size>threshold
的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。
Node节点类源码
// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
final K key;//键
V value;//值
// 指向下一个节点
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
// 重写hashCode()方法
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 重写 equals() 方法
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
树节点类源码:
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 父
TreeNode<K,V> left; // 左
TreeNode<K,V> right; // 右
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; // 判断颜色
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
// 返回根节点
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
构造方法
// 默认构造函数。
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
// 包含另一个“Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);//下面会分析到这个方法
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 指定“容量大小”和“负载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
// 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化
this.threshold = tableSizeFor(initialCapacity);
}
上述四个构造方法中,都初始化了负载因子 loadFactor,由于HashMap中没有 capacity 这样的字段,即使指定了初始化容量 initialCapacity ,也只是通过 tableSizeFor 将其扩容到与 initialCapacity 最接近的2的幂次方大小,然后暂时赋值给 threshold ,后续通过 resize 方法将 threshold 赋值给 newCap 进行 table 的初始化。
put方法(面试重点)
针对于jdk1.8分析,put
方法HashMap
只提供了 put
用于添加元素,putVal
方法只是给 put
方法调用的一个方法,并没有提供给用户使用。
对 putVal
方法添加元素的分析如下:
- 如果定位到的数组位置没有元素 就直接插入。
- 如果定位到的数组位置有元素就和要插入的
key
比较,如果 key 相同就直接覆盖,如果key
不相同,就判断p
是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)
将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。
过程如下:
源码如下:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素(处理hash冲突)
else {
Node<K,V> e; K k;
//快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 判断插入的是否是红黑树节点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 不是红黑树节点则说明为链表结点
else {
// 在链表最末插入结点
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
// 在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
// 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
// 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
break;
// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 结构性修改
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
get方法
获取对应 key 值的 value 值
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 数组元素相等
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 桶中不止一个节点
if ((e = first.next) != null) {
// 在树中get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 在链表中get
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
resize 方法
resize方法实际上是将 table 初始化和 table 扩容 进行了整合,底层的行为都是给 table 赋值一个新的数组。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量
newCap = oldThr;
else {
// signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化,
// 或者扩容前的旧容量小于16,在这里计算新的resize上限
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
// 只有一个节点,直接计算元素新的位置即可
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 将红黑树拆分成2棵子树,拆分后的子树节点数小于等于6,则将树转化成链表
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else {
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}