深度强化学习(二)

深度强化学习(二)(贝尔曼方程)

一.贝尔曼方程(将 Q π Q_\pi Qπ 表示成 Q π Q_\pi Qπ

Theorem :假设 R t R_t Rt S t 、 A t 、 S t + 1 S_t 、 A_t 、 S_{t+1} StAtSt+1 的函数。那么
Q π ( s t , a t ) = E S t + 1 , A t + 1 [ R t + γ ⋅ Q π ( S t + 1 , A t + 1 ) ∣ S t = s t , A t = a t ] . (1.1) Q_\pi\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1}, A_{t+1}}\left[R_t+\gamma \cdot Q_\pi\left(S_{t+1}, A_{t+1}\right) \mid S_t=s_t, A_t=a_t\right] .\tag{1.1} Qπ(st,at)=ESt+1,At+1[Rt+γQπ(St+1,At+1)St=st,At=at].(1.1)

proof:令 S t + 1 : = { S t + 1 , S t + 2 , ⋯   } \mathcal{S}_{t+1:}=\left\{S_{t+1}, S_{t+2}, \cdots\right\} St+1:={St+1,St+2,}, A t + 1 : = { A t + 1 , A t + 2 , ⋯   } \mathcal{A}_{t+1:}=\left\{A_{t+1}, A_{t+2}, \cdots\right\} At+1:={At+1,At+2,},由 U t U_t Ut的定义知 U t = R t + γ ⋅ U t + 1 U_t=R_t+\gamma \cdot U_{t+1} Ut=Rt+γUt+1
Q π ( s t , a t ) = E S t + 1 : , A t + 1 : [ U t ∣ S t = s t , A t = a t ] = E S t + 1 : , A t + 1 : [ R t + γ ⋅ U t + 1 ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 [ R t ∣ S t = s t , A t = a t ] ⏟ ( 1 ) + γ ⋅ E S t + 1 : , A t + 1 : [ U t + 1 ∣ S t = s t , A t = a t ] ⏟ ( 2 ) \begin{aligned} Q_\pi\left(s_t, a_t\right)&=\mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_t \mid S_t=s_t, A_t=a_t\right]\\ &=\mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[R_t+\gamma \cdot U_{t+1} \mid S_t=s_t, A_t=a_t\right]\\ &= \underbrace{\Bbb E_{\cal S_{t+1},\cal A_{t+1}}\left[R_t|S_t=s_t,A_t=a_t \right]}_{(1)}+\gamma\cdot\underbrace{ \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_{t+1} \mid S_t=s_t, A_t=a_t\right]}_{(2)}\\ \end{aligned} Qπ(st,at)=ESt+1:,At+1:[UtSt=st,At=at]=ESt+1:,At+1:[Rt+γUt+1St=st,At=at]=(1) ESt+1,At+1[RtSt=st,At=at]+γ(2) ESt+1:,At+1:[Ut+1St=st,At=at]
其中, t t t时刻的回报 R t R_{t} Rt只与 t + 1 t+1 t+1时刻的状态 S t + 1 S_{t+1} St+1有关,而 S t + 1 S_{t+1} St+1只与 S t , A t S_t,A_t St,At有关,则
( 1 ) = E S t + 1 , A t + 1 [ R t ∣ S t = s t , A t = a t ] = E S t + 1 [ R t ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 [ R t ∣ S t = s t , A t = a t ] \begin{aligned} (1)&=\Bbb E_{\cal S_{t+1},\cal A_{t+1}}\left[R_t|S_t=s_t,A_t=a_t \right]\\ &= \Bbb E_{S_{t+1}}\left [R_t|S_t=s_t,A_t=a_t\right]\\ &= \Bbb E_{S_{t+1},A_{t+1}}\left [R_t|S_t=s_t,A_t=a_t\right] \end{aligned} (1)=ESt+1,At+1[RtSt=st,At=at]=ESt+1[RtSt=st,At=at]=ESt+1,At+1[RtSt=st,At=at]
( 2 ) (2) (2)中的式子变形可得
( 2 ) = E S t + 1 : , A t + 1 : [ U t + 1 ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 , S t + 2 , A t + 2 [ U t + 1 ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 [ E S t + 2 , A t + 2 [ U t + 1 ∣ S t + 1 , A t + 1 , S t = s t , A t = a t ] ∣ S t = s t , A t = a t ] 利用马尔可夫性 = E S t + 1 , A t + 1 [ E S t + 2 , A t + 2 [ U t + 1 ∣ S t + 1 , A t + 1 ] ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 [ Q π ( S t + 1 , A t + 1 ) ∣ S t = s t , A t = a t ] \begin{aligned} (2)&= \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_{t+1} \mid S_t=s_t, A_t=a_t\right]\\ &= \Bbb E_{S_{t+1},A_{t+1},\cal S _{t+2},\cal A _{t+2}}\left[U_{t+1}|S_t=s_t,A_t=a_t \right]\\ &= \Bbb E_{S_{t+1},A_{t+1}}\left[\Bbb E_{\cal S_{t+2},\cal A_{t+2}}\left[U_{t+1}|S_{t+1},A_{t+1},S_t=s_t,A_t=a_t\right]|S_t=s_t,A_t=a_t \right]利用马尔可夫性\\ &=\Bbb E_{S_{t+1},A_{t+1}}\left[\Bbb E_{\cal S_{t+2},\cal A_{t+2}}\left[U_{t+1}|S_{t+1},A_{t+1}\right]|S_t=s_t,A_t=a_t \right] \\ &=\mathbb{E}_{S_{t+1}, A_{t+1}}\left[Q_\pi\left(S_{t+1}, A_{t+1}\right) \mid S_t=s_t, A_t=a_t\right] \end{aligned} (2)=ESt+1:,At+1:[Ut+1St=st,At=at]=ESt+1,At+1,St+2,At+2[Ut+1St=st,At=at]=ESt+1,At+1[ESt+2,At+2[Ut+1St+1,At+1,St=st,At=at]St=st,At=at]利用马尔可夫性=ESt+1,At+1[ESt+2,At+2[Ut+1St+1,At+1]St=st,At=at]=ESt+1,At+1[Qπ(St+1,At+1)St=st,At=at]
由此证毕。

二.贝尔曼方程  (将  Q π  表示成  V π  )  \text { (将 } Q_\pi \text { 表示成 } V_\pi \text { ) }  ( Qπ 表示成 Vπ ) 

Theorem :假设 R t R_t Rt S t 、 A t 、 S t + 1 S_t 、 A_t 、 S_{t+1} StAtSt+1 的函数。那么
Q π ( s t , a t ) = E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t , A t = a t ] (1.2) Q_\pi\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t, A_t=a_t\right]\tag{1.2} Qπ(st,at)=ESt+1[Rt+γVπ(St+1)St=st,At=at](1.2)

proof:  由于  V π ( S t + 1 ) = E A t + 1 ∼ π ( ⋅ ∣ S t + 1 ) [ Q ( S t + 1 , A t + 1 ) ] = E A t + 1 [ Q π ( S t + 1 , A t + 1 ) ∣ S t + 1 ] \text { 由于 } V_\pi\left(S_{t+1}\right)=\mathbb{E}_{A_{t+1}\sim \pi\left(\cdot \mid S_{t+1}\right)}\left[Q\left(S_{t+1}, A_{t+1}\right)\right]=\Bbb E_{A_{t+1}}\left[ Q_{\pi}(S_{t+1},A_{t+1})|S_{t+1}\right]  由于 Vπ(St+1)=EAt+1π(St+1)[Q(St+1,At+1)]=EAt+1[Qπ(St+1,At+1)St+1]
( 2 ) = E S t + 1 , A t + 1 [ Q π ( S t + 1 , A t + 1 ) ∣ S t = s t , A t = a t ] = E S t + 1 [ E A t + 1 [ Q π ( S t + 1 , A t + 1 ) ∣ S t + 1 ] ∣ S t = s t , A t = a t ] = E S t + 1 [ V π ( S t + 1 ) ∣ S t = s t , A t = a t ] \begin{aligned} (2)= &\mathbb{E}_{S_{t+1}, A_{t+1}}\left[Q_\pi\left(S_{t+1}, A_{t+1}\right) \mid S_t=s_t, A_t=a_t\right]\\ =&\Bbb E_{S_{t+1}}\left[\Bbb E_{A_{t+1}}\left[ Q_{\pi}(S_{t+1},A_{t+1})|S_{t+1}\right]|S_t=s_t,A_t=a_t\right]\\ =&\Bbb E_{S_{t+1}}\left[V_\pi\left(S_{t+1}\right)|S_t=s_t,A_t=a_t\right] \end{aligned} (2)===ESt+1,At+1[Qπ(St+1,At+1)St=st,At=at]ESt+1[EAt+1[Qπ(St+1,At+1)St+1]St=st,At=at]ESt+1[Vπ(St+1)St=st,At=at]
证毕

三.贝尔曼方程(将 V π V_\pi Vπ 表示成 V π V_\pi Vπ )

Theorem :假设 R t R_t Rt S t 、 A t 、 S t + 1 S_t 、 A_t 、 S_{t+1} StAtSt+1 的函数。那么
V π ( s t ) = E A t , S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t ] (1.3) V_\pi\left(s_t\right)=\mathbb{E}_{A_t, S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t\right]\tag{1.3} Vπ(st)=EAt,St+1[Rt+γVπ(St+1)St=st](1.3)

proof:
V π ( s t ) = E A t , S t + 1 , A t + 1 [ U t ∣ S t = s t ] = E A t , S t + 1 , A t + 1 , [ R t + γ U t + 1 ∣ S t = s t ] = E A t , S t + 1 , A t + 1 [ R t ∣ S t = s t ] + γ E A t , S t + 1 , A t + 1 [ U t + 1 ∣ S t = s t ] = E A t , S t + 1 [ R t ∣ S t = s t ] + γ E S t + 1 [ E A t A t + 1 , S t + 2 [ U t + 1 ∣ S t + 1 , S t = s t ] ∣ S t = s t ] = E A t , S t + 1 [ R t ∣ S t = s t ] + γ E S t + 1 [ E A t + 1 , S t + 2 [ U t + 1 ∣ S t + 1 ] ∣ S t = s t ] 马尔可夫性 = E A t , S t + 1 [ R t ∣ S t = s t ] + γ E S t + 1 [ V π ( S t + 1 ) ∣ S t = s t ] = E A t , S t + 1 [ R t ∣ S t = s t ] + γ E A t , S t + 1 [ V π ( S t + 1 ) ∣ S t = s t ] 马尔可夫性 证毕 \begin{aligned} V_\pi\left(s_t\right)&=\Bbb E_{A_t,\cal S_{t+1}, \cal A_{t+1}}\left[U_t \mid S_t=s_t\right] \\ & =\Bbb E_{A_t,\cal S_{t+1}, \cal A_{t+1}},\left[R_t+\gamma U_{t+1}|S_t=s_t\right] \\ & =\Bbb E_{A_t,\cal S_{t+1}, \cal A_{t+1}}\left[R_t \mid S_t=s_t\right] +\gamma \Bbb E_{A_t,\cal S_{t+1}, \cal A_{t+1}}\left[U_{t+1} \mid S_t=s_t\right] \\ & =\Bbb E_{A_t, S_{t+1}}\left[R_t \mid S_t=s_t\right] +\gamma \Bbb E_{S_{t+1}}\left[\Bbb E_{A_t \cal A_{t+1}, \cal S_{t+2}}\left[U_{t+1} \mid S_{t+1},S_t=s_t\right]\mid S_{t}=s_t\right]\qquad \\ & =\Bbb E_{A_t, S_{t+1}}\left[R_t \mid S_t=s_t\right]+ \gamma \Bbb E_{S_{t+1}}\left[ E_{ \cal A_{t+1}, \cal S_{t+2}}\left[U_{t+1} \mid S_{t+1}\right]\mid S_{t}=s_t\right]马尔可夫性\\ & = \Bbb E_{A_t, S_{t+1}}\left[R_t \mid S_t=s_t\right]+ \gamma \Bbb E_{S_{t+1}}\left[V_{\pi}(S_{t+1})\mid S_{t}=s_t\right]\\ &=\Bbb E_{A_t, S_{t+1}}\left[R_t \mid S_t=s_t\right]+ \gamma \Bbb E_{A_t, S_{t+1}}\left[V_{\pi}(S_{t+1})\mid S_{t}=s_t\right]马尔可夫性\\ \textbf{证毕} \end{aligned} Vπ(st)证毕=EAt,St+1,At+1[UtSt=st]=EAt,St+1,At+1,[Rt+γUt+1St=st]=EAt,St+1,At+1[RtSt=st]+γEAt,St+1,At+1[Ut+1St=st]=EAt,St+1[RtSt=st]+γESt+1[EAtAt+1,St+2[Ut+1St+1,St=st]St=st]=EAt,St+1[RtSt=st]+γESt+1[EAt+1,St+2[Ut+1St+1]St=st]马尔可夫性=EAt,St+1[RtSt=st]+γESt+1[Vπ(St+1)St=st]=EAt,St+1[RtSt=st]+γEAt,St+1[Vπ(St+1)St=st]马尔可夫性
或者直接利用式 1.2 1.2 1.2,两边同时对 A t ∼ π ( ⋅ ∣ s t ) A_t\sim \pi(\cdot|s_t) Atπ(st)求期望得
E A t ∼ π ( ⋅ ∣ s t ) [ Q π ( s t , A t ) ] = E A t ∼ π ( ⋅ ∣ s t ) [ E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t , A t ] ] ⇕ E A t [ Q π ( S t , A t ) ∣ S t = s t ] = E A t [ E S t + 1 [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t , A t ] ∣ S t = s t ] = E S t + 1 , A t [ R t + γ ⋅ V π ( S t + 1 ) ∣ S t = s t ] \begin{aligned} \Bbb E_{A_t\sim \pi(\cdot|s_t)}[Q_\pi\left(s_t, A_t\right)]&=\Bbb E_{A_t\sim \pi(\cdot|s_t)}[\mathbb{E}_{S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t,A_t\right]]\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \Updownarrow \\ \Bbb E_{A_t}[Q_\pi\left(S_t, A_t\right)\mid S_t=s_t]&=\Bbb E_{A_t}[\mathbb{E}_{S_{t+1}}\left[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t,A_t\right]\mid S_t=s_t]\\ &=\mathbb{E}_{S_{t+1},A_{t}}[R_t+\gamma \cdot V_\pi\left(S_{t+1}\right) \mid S_t=s_t] \end{aligned} EAtπ(st)[Qπ(st,At)]EAt[Qπ(St,At)St=st]=EAtπ(st)[ESt+1[Rt+γVπ(St+1)St=st,At]]=EAt[ESt+1[Rt+γVπ(St+1)St=st,At]St=st]=ESt+1,At[Rt+γVπ(St+1)St=st]

利用式 1.3 1.3 1.3,进一步写出显示表达式可得
V π ( s t ) = E A t , S t + 1 [ R t ∣ S t = s t ] + γ E A t , S t + 1 [ V π ( S t + 1 ) ∣ S t = s t ] = E A t [ E S t + 1 [ R t ∣ A t , S t = s t ] ∣ S t = s t ] + γ E A t [ E S t + 1 [ V π ( S t + 1 ) ∣ A t , S t = s t ] ∣ S t = s t ] = ∑ A t π ( a t ∣ s t ) E S t + 1 [ R t ∣ A t , S t = s t ] + γ ∑ A t π ( a t ∣ s t ) E S t + 1 [ V π ( S t + 1 ) ∣ A t , S t = s t ] = ∑ A t π ( a t ∣ s t ) ∑ S t + 1 r ⋅ p ( s t + 1 ∣ s t , a t ) + γ ∑ A t π ( a t ∣ s t ) ∑ S t + 1 V π ( s t + 1 ) ⋅ p ( s t + 1 ∣ s t , a t ) \begin{aligned} V_{\pi}(s_t)&=\Bbb E_{A_t, S_{t+1}}\left[R_t \mid S_t=s_t\right]+ \gamma \Bbb E_{A_t, S_{t+1}}\left[V_{\pi}(S_{t+1})\mid S_{t}=s_t\right]\\ &= \Bbb E_{A_t}[\Bbb E_{S_{t+1}}[R_t\mid A_t,S_t=s_t ]\mid S_t=s_t] +\gamma \Bbb E_{A_t}\left[\Bbb E_{S_{t+1}}\left[V_{\pi(S_{t+1})}\mid A_t,S_t=s_t\right]\mid S_t=s_t \right]\\ & =\sum_{A_t}\pi(a_t\mid s_{t})\Bbb E_{S_{t+1}}[R_t\mid A_t ,S_t=s_t]+\gamma \sum_{A_t}\pi(a_t\mid s_t)\Bbb E_{S_{t+1}}\left[V_{\pi(S_{t+1})}\mid A_t,S_t=s_t\right] \\ &=\sum_{A_t}\pi(a_t\mid s_{t})\sum_{S_{t+1}}r\cdot p(s_{t+1}\mid s_t,a_t)+\gamma \sum_{A_t}\pi(a_t\mid s_t)\sum_{S_{t+1}}V_{\pi}(s_{t+1})\cdot p(s_{t+1}\mid s_t,a_t) \end{aligned} Vπ(st)=EAt,St+1[RtSt=st]+γEAt,St+1[Vπ(St+1)St=st]=EAt[ESt+1[RtAt,St=st]St=st]+γEAt[ESt+1[Vπ(St+1)At,St=st]St=st]=Atπ(atst)ESt+1[RtAt,St=st]+γAtπ(atst)ESt+1[Vπ(St+1)At,St=st]=Atπ(atst)St+1rp(st+1st,at)+γAtπ(atst)St+1Vπ(st+1)p(st+1st,at)
其中 r = r ( s t , s t + 1 , a t ) r=r(s_t,s_{t+1},a_t) r=r(st,st+1,at)

四.最优贝尔曼方程

Theorem :假设 R t R_t Rt S t 、 A t 、 S t + 1 S_t 、 A_t 、 S_{t+1} StAtSt+1 的函数。那么
Q ⋆ ( s t , a t ) = E S t + 1 ∼ p ( ⋅ ∣ s t , a t ) [ R t + γ ⋅ max ⁡ A ∈ A Q ⋆ ( S t + 1 , A ) ∣ S t = s t , A t = a t ] (1.4) Q_{\star}\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1} \sim p\left(\cdot \mid s_t, a_t\right)}\left[R_t+\gamma \cdot \max _{A \in \mathcal{A}} Q_{\star}\left(S_{t+1}, A\right) \mid S_t=s_t, A_t=a_t\right] \tag{1.4} Q(st,at)=ESt+1p(st,at)[Rt+γAAmaxQ(St+1,A)St=st,At=at](1.4)

由贝尔曼方程可知
Q ⋆ ( s t , a t ) = E S t + 1 , A t + 1 [ R t + γ ⋅ Q ⋆ ( S t + 1 , A t + 1 ) ∣ S t = s t , A t = a t ] Q_{\star}\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1}, A_{t+1}}\left[R_t+\gamma \cdot Q_{\star}\left(S_{t+1}, A_{t+1}\right) \mid S_t=s_t, A_t=a_t\right] Q(st,at)=ESt+1,At+1[Rt+γQ(St+1,At+1)St=st,At=at]
因为动作 A t + 1 = argmax ⁡ A Q ⋆ ( S t + 1 , A ) A_{t+1}=\operatorname{argmax}_A Q_{\star}\left(S_{t+1}, A\right) At+1=argmaxAQ(St+1,A) 是状态 S t + 1 S_{t+1} St+1 的确定性函数, 所以
Q ⋆ ( s t , a t ) = E S t + 1 [ R t + γ ⋅ max ⁡ A ∈ A Q ⋆ ( S t + 1 , A ) ∣ S t = s t , A t = a t ] Q_{\star}\left(s_t, a_t\right)=\mathbb{E}_{S_{t+1}}\left[R_t+\gamma \cdot \max _{A \in \mathcal{A}} Q_{\star}\left(S_{t+1}, A\right) \mid S_t=s_t, A_t=a_t\right] Q(st,at)=ESt+1[Rt+γAAmaxQ(St+1,A)St=st,At=at]

五.多步目标下的贝尔曼方程

R k R_k Rk S k 、 A k 、 S k + 1 S_k 、 A_k 、 S_{k+1} SkAkSk+1 的函数, ∀ k = 1 , ⋯   , n \forall k=1, \cdots, n k=1,,n 。 那么
Q π ( s t , a t ) ⏟ U t  的期望  = E S t + 1 , A t + 1 , ⋯   , S t + m , A t + m [ ( ∑ i = 0 m − 1 γ i R t + i ) + γ m ⋅ Q π ( S t + m , A t + m ) ⏟ U t + m  的期望  ∣ S t = s t , A t = a t ] . \underbrace{Q_\pi\left(s_t, a_t\right)}_{U_t \text { 的期望 }}=\mathbb{E}_{S_{t+1}, A_{t+1}, \cdots, S_{t+m}, A_{t+m}}[\left(\sum_{i=0}^{m-1} \gamma^i R_{t+i}\right)+\gamma^m \cdot \underbrace{Q_\pi\left(S_{t+m}, A_{t+m}\right)}_{U_{t+m} \text { 的期望 }} \mid S_t=s_t, A_t=a_t] . Ut 的期望  Qπ(st,at)=ESt+1,At+1,,St+m,At+m[(i=0m1γiRt+i)+γmUt+m 的期望  Qπ(St+m,At+m)St=st,At=at].

proof:设一局游戏的长度为 n n n 。根据定义, t t t 时刻的回报 U t U_t Ut t t t 时刻之后的所有奖励的加权和:
U t = R t + γ R t + 1 + γ 2 R t + 2 + ⋯ + γ n − t R n . U_t=R_t+\gamma R_{t+1}+\gamma^2 R_{t+2}+\cdots+\gamma^{n-t} R_n . Ut=Rt+γRt+1+γ2Rt+2++γntRn.

同理, t + m t+m t+m 时刻的回报可以写成:
U t + m = R t + m + γ R t + m + 1 + γ 2 R t + m + 2 + ⋯ + γ n − t − m R n . U_{t+m}=R_{t+m}+\gamma R_{t+m+1}+\gamma^2 R_{t+m+2}+\cdots+\gamma^{n-t-m} R_n . Ut+m=Rt+m+γRt+m+1+γ2Rt+m+2++γntmRn.

下面我们推导两个回报的关系。把 U t U_t Ut 写成:
U t = ( R t + γ R t + 1 + ⋯ + γ m − 1 R t + m − 1 ) + ( γ m R t + m + ⋯ + γ n − t R n ) = ( ∑ i = 0 m − 1 γ i R t + i ) + γ m ( R t + m + γ R t + m + 1 + ⋯ + γ n − t − m R n ) ⏟ 等于  U t + m . \begin{aligned} U_t & =\left(R_t+\gamma R_{t+1}+\cdots+\gamma^{m-1} R_{t+m-1}\right)+\left(\gamma^m R_{t+m}+\cdots+\gamma^{n-t} R_n\right) \\ & =\left(\sum_{i=0}^{m-1} \gamma^i R_{t+i}\right)+\gamma^m \underbrace{\left(R_{t+m}+\gamma R_{t+m+1}+\cdots+\gamma^{n-t-m} R_n\right)}_{\text {等于 } U_{t+m}} . \end{aligned} Ut=(Rt+γRt+1++γm1Rt+m1)+(γmRt+m++γntRn)=(i=0m1γiRt+i)+γm等于 Ut+m (Rt+m+γRt+m+1++γntmRn).

因此, 回报可以写成这种形式: U t = ( ∑ i = 0 m − 1 γ i R t + i ) + γ m U t + m . U_t=\left(\sum_{i=0}^{m-1} \gamma^i R_{t+i}\right)+\gamma^m U_{t+m} . Ut=(i=0m1γiRt+i)+γmUt+m.
Q π ( s t , a t ) = E S t + 1 : , A t + 1 : [ U t ∣ S t = s t , A t = a t ] = E S t + 1 : , A t + 1 : [ ( ∑ i = 0 m − 1 γ i R t + i ) + γ m U t + m ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 [ ∑ i = 0 m − 1 γ i R t + i ∣ S t = s t , A t = a t ] ⏟ ( 1 ) + γ m ⋅ E S t + 1 : , A t + 1 : [ U t + m ∣ S t = s t , A t = a t ] ⏟ ( 2 ) \begin{aligned} Q_\pi\left(s_t, a_t\right)&=\mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_t \mid S_t=s_t, A_t=a_t\right]\\ &=\mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[\left(\sum_{i=0}^{m-1} \gamma^i R_{t+i}\right)+\gamma^m U_{t+m} \mid S_t=s_t, A_t=a_t\right]\\ &= \underbrace{\Bbb E_{\cal S_{t+1},\cal A_{t+1}}\left[\sum_{i=0}^{m-1} \gamma^i R_{t+i}|S_t=s_t,A_t=a_t \right]}_{(1)}+\gamma^{m}\cdot\underbrace{ \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_{t+m} \mid S_t=s_t, A_t=a_t\right]}_{(2)} \end{aligned} Qπ(st,at)=ESt+1:,At+1:[UtSt=st,At=at]=ESt+1:,At+1:[(i=0m1γiRt+i)+γmUt+mSt=st,At=at]=(1) ESt+1,At+1[i=0m1γiRt+iSt=st,At=at]+γm(2) ESt+1:,At+1:[Ut+mSt=st,At=at]

其中(1) = E S t + 1 , A t + 1 [ ∑ i = 0 m − 1 γ i R t + i ∣ S t = s t , A t = a t ] = E S t + 1 , ⋯   , S t + m , A t + 1 , ⋯   , A t + m − 1 [ ∑ i = 0 m − 1 γ i R t + i ∣ S t = s t , A t = a t ] 最简形式,其他都与 R t , ⋯   , R t + m − 1 无关 = E S t + 1 , ⋯   , S t + m , A t + 1 , ⋯   , A t + m [ ∑ i = 0 m − 1 γ i R t + i ∣ S t = s t , A t = a t ] \begin{aligned} \text{其中(1)}&=\Bbb E_{\cal S_{t+1},\cal A_{t+1}}\left[\sum_{i=0}^{m-1} \gamma^i R_{t+i}|S_t=s_t,A_t=a_t \right]\\ &=\Bbb E_{S_{t+1},\cdots,S_{t+m},A_{t+1},\cdots,A_{t+m-1}}\left[\sum_{i=0}^{m-1} \gamma^i R_{t+i}|S_t=s_t,A_t=a_t \right]\text{最简形式,其他都与}R_{t},\cdots,R_{t+m-1}无关\\ &=\Bbb E_{S_{t+1},\cdots,S_{t+m},A_{t+1},\cdots,A_{t+m}}\left[\sum_{i=0}^{m-1} \gamma^i R_{t+i}|S_t=s_t,A_t=a_t \right] \end{aligned} 其中(1)=ESt+1,At+1[i=0m1γiRt+iSt=st,At=at]=ESt+1,,St+m,At+1,,At+m1[i=0m1γiRt+iSt=st,At=at]最简形式,其他都与Rt,,Rt+m1无关=ESt+1,,St+m,At+1,,At+m[i=0m1γiRt+iSt=st,At=at]

其中(2) = E S t + 1 : , A t + 1 : [ U t + m ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 , ⋯   , S t + m , A t + m , S t + m + 1 , A t + m + 1 [ U t + m ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 , ⋯   , S t + m , A t + m [ E S t + m + 1 , A t + m + 1 [ U t + m ∣ S t + 1 , A t + 1 , ⋯   , S t + m , A t + m , S t = s t , A t = a t ] ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 , ⋯   , S t + m , A t + m [ E S t + m + 1 , A t + m + 1 [ U t + m ∣ S t + m , A t + m ] ∣ S t = s t , A t = a t ] = E S t + 1 , A t + 1 , ⋯   , S t + m , A t + m [ Q π ( S t + m , A t + m ) ∣ S t = s t , A t = a t ] \begin{aligned} \text{其中(2)}&= \mathbb{E}_{\mathcal{S}_{t+1:}, \mathcal{A}_{t+1:}}\left[U_{t+m} \mid S_t=s_t, A_t=a_t\right]\\ &=\Bbb E_{S_{t+1},A_{t+1},\cdots,S_{t+m},A_{t+m},\cal S_{t+m+1},\cal A_{t+m+1}}\left[U_{t+m} \mid S_t=s_t, A_t=a_t\right]\\ &=\Bbb E_{S_{t+1},A_{t+1},\cdots,S_{t+m},A_{t+m}}[\Bbb E_{\cal S_{t+m+1},\cal A_{t+m+1}}[U_{t+m}\mid S_{t+1},A_{t+1},\cdots,S_{t+m},A_{t+m},S_t=s_t, A_t=a_t]\mid S_t=s_t, A_t=a_t]\\ &=\Bbb E_{S_{t+1},A_{t+1},\cdots,S_{t+m},A_{t+m}}[\Bbb E_{\cal S_{t+m+1},\cal A_{t+m+1}}[U_{t+m}\mid S_{t+m},A_{t+m}]\mid S_t=s_t, A_t=a_t]\\ &=\Bbb E_{S_{t+1},A_{t+1},\cdots,S_{t+m},A_{t+m}}[Q_{\pi}(S_{t+m},A_{t+m})\mid S_t=s_t,A_t=a_t] \end{aligned} 其中(2)=ESt+1:,At+1:[Ut+mSt=st,At=at]=ESt+1,At+1,,St+m,At+m,St+m+1,At+m+1[Ut+mSt=st,At=at]=ESt+1,At+1,,St+m,At+m[ESt+m+1,At+m+1[Ut+mSt+1,At+1,,St+m,At+m,St=st,At=at]St=st,At=at]=ESt+1,At+1,,St+m,At+m[ESt+m+1,At+m+1[Ut+mSt+m,At+m]St=st,At=at]=ESt+1,At+1,,St+m,At+m[Qπ(St+m,At+m)St=st,At=at]

证毕

  • 19
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值