使用BERT中文问答系统遇到警告信息UserWarning: None of the inputs have requires_grad=True. Gradients will be None的处置

使用BERT的中文问答系统当你遇到的警告信息 UserWarning: None of the inputs have requires_grad=True. Gradients will be None 是由 PyTorch 的 torch.utils.checkpoint 模块生成的。这个警告意味着在使用梯度检查点(gradient checkpointing)时,所有的输入张量都没有设置 requires_grad=True,因此不会计算任何梯度。

解释

梯度检查点(Gradient Checkpointing):

梯度检查点是一种内存优化技术,通过在前向传播时释放中间激活值并在反向传播时重新计算它们来减少内存占用。这对于训练大型模型特别有用。
requires_grad=True:

在 PyTorch 中,只有当张量的 requires_grad 属性设置为 True 时,才会跟踪其计算图并计算梯度。默认情况下,张量的 requires_grad 属性是 False。
警告原因:

当你使用 torch.utils.checkpoint 时,如果所有输入张量的 requires_grad 都是 False,那么即使启用了梯度检查点,也不会计算任何梯度。这会导致梯度为 None,从而无法更新模型参数。
解决方法
确保输入张量的 requires_grad 设置为 True:

如果你需要计算梯度并更新模型参数,确保输入张量的 requires_grad 属性设置为 True。例如:
python

input_tensor = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)

检查模型的输入:

确保在传递给模型的输入张量中,至少有一个张量的 requires_grad 属性设置为 True。例如,在你的 XihuaModel 中,确保 input_ids 和 attention_mask 的 requires_grad 属性设置为 True:
python

inputs = self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yehaiwz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值