图神经网络知识图谱推理模型(R-GCN、KBGAT、CompGCN)

R-GCN

通过这幅图可以看清,对于中心红色的节点进行一次卷积,通过聚合邻居节点的信息来更新自身节点的表示。

图中节点vi的更新方式如下:

R为关系结合,N为邻居点集合,c为一个常量(正则化系数),W为参数矩阵

遍历每一种关系下,叠加每一个点的邻居点的特征进行融合,最后加上一层的中心节点特征,经过一个激活函数输出作为中心节点的输出特征

由于关系类型的数量可能非常多,直接对每种关系类型都分配一个参数矩阵,导致参数数量过多,为防止过拟合,提出了两种方法对R-GCN层进行正则化

块对角分解

Wr(r)为块对角矩阵

基数分解法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值