基于神经网络的知识图谱推理模型 (ConvE、ConvKB、ConvR、InteractE)

ConvE

ConvE是一种使用嵌入上的 2D 卷积来预测知识图中缺失链接的模型,在学习及提取实体及关系的语义特征方面具有很强的优势。 

特征组合:将头实体和关系向量进行拼接,dropout随机丢弃,防止过拟合

特征提取:将拼接后的多维向量进行卷积,做特征提取,再全连接做特征加权

特征匹配:得到的结果乘以目标尾实体​,通常表示某种加权或融合。最终进行逻辑回归,从而得到知识三元组的置信度评分

通过这样处理,可以捕获源实体、目标实体和关系 r 之间的复杂交互关系。

除此之外,该模型提出了1-N评分方法,采用一对 (s, r) 并针对所有实体 o 对其进行评分 ,使得模型的评测速度相比1-1评分方法提升了300倍。

ConvKB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值