ConvE
ConvE是一种使用嵌入上的 2D 卷积来预测知识图中缺失链接的模型,在学习及提取实体及关系的语义特征方面具有很强的优势。
特征组合:将头实体和关系向量进行拼接,dropout随机丢弃,防止过拟合
特征提取:将拼接后的多维向量进行卷积,做特征提取,再全连接做特征加权
特征匹配:得到的结果乘以目标尾实体,通常表示某种加权或融合。最终进行逻辑回归,从而得到知识三元组的置信度评分。
通过这样处理,可以捕获源实体、目标实体和关系 r 之间的复杂交互关系。
除此之外,该模型提出了1-N评分方法,采用一对 (s, r) 并针对所有实体 o 对其进行评分 ,使得模型的评测速度相比1-1评分方法提升了300倍。