多层神经网络
本节介绍更复杂的函数
例如:
图中每个圆都代表一个线性函数,举例第一个绿圆为y=w1x1+w2x2+w3x3+b。
一个黄圈圈y就是一个神经元,也就是一条线性函数
- 神经元与矩阵
最后一步的转置,是为了求出数值y。
所以,神经网络可以演化成矩阵运算。
激活函数
实现预测函数的拐弯
- 另一个角度理解拟合函数和激活函数
红色为真实函数,没有线性函数可以拟合该函数,故需要激活函数进行拟合
- 以下为激活函数的原理与相关知识。
注意,粗体r为矩阵,r=b+wx。
所有的权重w和偏置b都为函数的**参数θ**。
激活函数能求导:目前,我们所做的工作都是求y=wx+b中的w和b以及loss,通过多层函数映射后的预测值要与真值求差并对w和b求导,从而进行函数优化,所以要求函数必须可以求导。rule函数中虽然0点不可导,但是深度学习中一般上不会取0点
最终,我们通过层层参数θ,获得预测值。下一步进行函数优化。
深度学习的训练过程
loss逐层先后传递进行求导,即梯度回传,也称反向传播。
- FC(Fully Connected):全连接层
- Fully Connected Network:全连接网络
- Neuron:神经元
- Neuron Network:神经网络
- 多层感知机:超过两层的全连接网络
注意:深度学习神经网络并不是层数越多越好,因为中途会遇到瓶颈,要想更好,需要进行别的方面的创新
- overfitting:过拟合。 underfitting:欠拟合。
other
不同模型需要不同版本的conda和torch,注意下载的版本。