深度学习线性函数的搭建和优化概念

深度学习

  • 初始神经网络任务
    深度学习就是找一个函数f。
    找映射关系(输入A输出B,输入图片输出名字,输入宫廷玉液酒输出一百八一杯
    在这里插入图片描述

  • 常见神经网络的输入,一般有三种数据形式。
    在这里插入图片描述

  • 常见神经网络的输出,一般也分为三种。
    在这里插入图片描述

  • 深度学习任务

  • 分类/回归/结构化

分类和回归是生成的基础。
分类时,使用数字来表示类别。
在这里插入图片描述

回归与神经元

深度学习需要数据,深度学习就是做神经网络

  • Step 1
  • 如何开始深度学习:
    定义model函数、loss函数。
    循环优化。
    在这里插入图片描述
  • Step 2
  • 找函数f
    数据 feature ,标签 label
    在这里面,自变量不是x,而是w和b(weight权重,bias偏差)
    数据+答案 = 规则
    在这里插入图片描述
  • Step 3
  • 优化函数
    w* ,b* = arg min L 最常见的优化公式,意为让L最小的w和b,同理,w* ,b* = arg max L为让L最大的w和b
    梯度下降优化函数
    在这里插入图片描述
    学习率(超参数)为人定,后期调参数调的就有学习率
    loss函数包括但不限于
    在这里插入图片描述
    注意,这么多的参数人为不可能算出来,学习深度学习之前安装的torch就是帮我们算这些参数。
    torch帮忙优化

小结

本文所有图片来自CCtalk李哥深度学习班级

本节深度学习函数只能是线性,下节学习更加复杂的函数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值