深度学习
-
初始神经网络任务
深度学习就是找一个函数f。
找映射关系(输入A输出B,输入图片输出名字,输入宫廷玉液酒输出一百八一杯)
-
常见神经网络的输入,一般有三种数据形式。
-
常见神经网络的输出,一般也分为三种。
-
深度学习任务
-
分类/回归/结构化
分类和回归是生成的基础。
分类时,使用数字来表示类别。
回归与神经元
深度学习需要数据,深度学习就是做神经网络
- Step 1
- 如何开始深度学习:
定义model函数、loss函数。
循环优化。
- Step 2
- 找函数f
数据 feature ,标签 label
在这里面,自变量不是x,而是w和b(weight权重,bias偏差)
数据+答案 = 规则
- Step 3
- 优化函数
w* ,b* = arg min L 最常见的优化公式,意为让L最小的w和b,同理,w* ,b* = arg max L为让L最大的w和b
梯度下降优化函数
学习率(超参数)为人定,后期调参数调的就有学习率
loss函数包括但不限于
注意,这么多的参数人为不可能算出来,学习深度学习之前安装的torch就是帮我们算这些参数。
小结
本文所有图片来自CCtalk李哥深度学习班级
本节深度学习函数只能是线性,下节学习更加复杂的函数。