前言
深度学习初识
人工智能➡机器学习➡深度学习
- 人工智能:能够感知、推理、行动和适应的程序。
- 机器学习:能够随着数据量的增加不断改进性能的算法。
- 深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习。
传统系统:数据+规则 = 答案
机器学习:数据+答案 = 规则
机器学习一般上是基于数学,或统计学方法
机器学习算法
KNN:K最近邻居(K-Nesrest Neighbors,简称KNN)
- 距离
- 监督学习算法,用于分类和回归问题。基本思想是通过测量不同数据点之间的距离来进行预测。KNN的工作原理可以概括为以下几个步骤:
1、距离度量:KNN使用距离度量(通常是欧氏距离)来衡量数据点之间的相似性。
2、确定邻居数量K。
3、投票机制。
决策树
- 层层递进(二叉树)
- 基尼系数:Gini(D)
朴素贝叶斯
- 贝叶斯公式