初识深度学习

本文介绍了人工智能、机器学习和深度学习的基本概念,重点讲解了K最近邻(KNN)算法、决策树以及朴素贝叶斯在分类和回归问题中的应用,通过距离度量和统计方法展示这些机器学习算法的工作原理。
摘要由CSDN通过智能技术生成


前言

深度学习初识


人工智能➡机器学习➡深度学习

  • 人工智能:能够感知、推理、行动和适应的程序。
  • 机器学习:能够随着数据量的增加不断改进性能的算法。
  • 深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习。

传统系统:数据+规则 = 答案
机器学习:数据+答案 = 规则
机器学习一般上是基于数学,或统计学方法

机器学习算法

KNN:K最近邻居(K-Nesrest Neighbors,简称KNN)

  • 距离
  • 监督学习算法,用于分类和回归问题。基本思想是通过测量不同数据点之间的距离来进行预测。KNN的工作原理可以概括为以下几个步骤:
    1、距离度量:KNN使用距离度量(通常是欧氏距离)来衡量数据点之间的相似性。
    2、确定邻居数量K
    3、投票机制。

决策树

  • 层层递进(二叉树)
  • 基尼系数:Gini(D)

朴素贝叶斯

  • 贝叶斯公式
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值