自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 MySQL【一】

在当今数据驱动的时代,高效地管理和查询数据库对于企业和个人来说至关重要。SQL(Structured Query Language)作为一种强大的数据库查询语言,广泛应用于各种规模的数据库系统中。而 SQL 思维导图则是一种帮助我们更好地理解和掌握 SQL 的工具。SQL 思维导图以可视化的方式呈现了 SQL 的各个知识点和概念之间的关系。它就像是一张地图,指引我们在 SQL 的知识海洋中航行。

2024-10-06 12:01:05 1113

原创 教师与授课信息管理系统

本文分享了一个基于 Python 和 MySQL 的信息管理系统,以教师与授课关系表设计,此项目曾是课程期末作业且获 90 多分。文中涵盖安装 pymysql 库、连接数据库、创建数据表、创建游标对象等步骤。还详细介绍了页面菜单及增加、修改、删除、查询数据等功能。作者非计算机专业,深知小白学习难点,如不懂代码、没思路、代码不运行及不知报错位置等。该系统功能实用,步骤清晰,对学习 Python 与数据库交互者有很大吸引力。

2024-10-06 11:18:18 718

原创 Pandas【三】

本篇思维导图旨在帮助读者快速了解和掌握Pandas的基本概念、常用功能和操作技巧。通过这张思维导图,您将能够更加系统地学习和应用Pandas,提升数据处理的效率和质量。本篇是Pandas系列的最后一篇思维导图了,PDF和相关的代码已经导入到博客的资源里,有需要的朋友可自行前往下载,有话不多说,直接开始!本文创作不易,请各位大佬们动动你们的宝贵的小手指,二、思维导图Pandas【三】数据合并merge()方法right:合并对象,DataFrame或Series。

2024-09-27 21:08:28 787

原创 Pandas【二】

Pandas是Python中一个非常强大的数据处理库,广泛应用于数据分析、数据清洗和数据可视化等领域。它提供了丰富的数据结构和操作方法,使得处理表格数据变得更加简单高效。本篇思维导图旨在帮助读者快速了解和掌握Pandas的基本概念、常用功能和操作技巧。通过这张思维导图,您将能够更加系统地学习和应用Pandas,提升数据处理的效率和质量。本文创作不易,请各位大佬们动动你们的宝贵的小手指,

2024-09-26 21:58:08 701

原创 Python基础【四】

本篇是Python基础系列的最后一篇思维导图了,PDF和相关的代码已经导入到博客的资源里,有需要的朋友可自行前往下载,有话不多说,直接开始!

2024-09-26 21:51:08 324

原创 Python基础【三】

Python基础的重要性不言而喻,它是掌握这门强大编程语言的关键。扎实的基础知识能够帮助初学者快速理解更复杂的编程概念和技术。因此,精通Python基础不仅能够提高编程效率,还能为深入学习高级技术打下坚实的基础,是每个程序员成长道路上的重要一步。本文是在学习Python基础知识时所做的笔记和思维导图。可供给新人在学习过程中使用的资料,我是靠自学而来,非计算机专业,懂得初入学者的在学习中的难点痛点。

2024-09-25 20:38:58 309

原创 Python基础【二】

Python基础的重要性不言而喻,它是掌握这门强大编程语言的关键。扎实的基础知识能够帮助初学者快速理解更复杂的编程概念和技术。因此,精通Python基础不仅能够提高编程效率,还能为深入学习高级技术打下坚实的基础,是每个程序员成长道路上的重要一步。本文是在学习Python基础知识时所做的笔记和思维导图。可供给新人在学习过程中使用的资料,我是靠自学而来,非计算机专业,懂得初入学者的在学习中的难点痛点。

2024-09-25 20:34:24 218

原创 Pandas【一】

Pandas是Python中一个非常强大的数据处理库,广泛应用于数据分析、数据清洗和数据可视化等领域。它提供了丰富的数据结构和操作方法,使得处理表格数据变得更加简单高效。本篇思维导图旨在帮助读者快速了解和掌握Pandas的基本概念、常用功能和操作技巧。通过这张思维导图,您将能够更加系统地学习和应用Pandas,提升数据处理的效率和质量。

2024-09-23 21:07:00 813

原创 房屋价格预测分析

实际上分析其实不仅仅这几个,由于时间和精力的原因,还有几个角度没有编写出来,若感兴趣学习的朋友可以翻到最下面。

2024-09-23 20:49:19 1239

原创 Python基础【一】

python基础思维导图

2024-09-22 14:59:16 361

原创 医药电商销售分析

在当前这个数据驱动的时代,数据分析已经成为了各个行业决策过程中至关重要的一环。本文是“2022年全国大学生数据分析大赛”的一个比赛题目。虽然时间已经过去一段时间,但这篇文章仍具有学习和分享的价值,可以给那些刚踏入数据分析领域的人提供一个学习和思考的机会项目。希望这篇文章能对您的学习和工作有所帮助,同时也期待与大家一起交流和探讨!

2024-09-22 14:19:10 1108

原创 股票量化回测分析

在金融市场中,股票价格的波动受到多种因素的影响,包括经济数据、公司业绩和政策变化等。为了分析和预测股票价格的走势,投资者可以借助各种技术指标和分析方法,如:金叉死叉、相对强弱指标(RSI)和移动平均线(MACD)等技术指标。这些指标可以辅助投资者识别股票价格的趋势和反转点,从而指导投资者进行买卖决策。然而,需要注意的是,技术指标和分析方法并不能完全预测股票价格的走势,它们只是提供了一种辅助工具。技术指标也可能存在滞后性和误导性的问题,因此投资者应谨慎使用,并结合基本面分析和市场情绪等因素进行综合判断。

2023-07-11 11:47:04 1156 1

股票量化回测分析.zip

在金融市场中,股票价格的波动受到多种因素的影响,为了分析和预测股票价格的走势,投资者可以借助各种技术指标和分析方法。本文旨在通过建立机器学习模型策略对股票价格进行回测的分析,以帮助投资者评估和优化投资策略,从而减少投资风险。 选取了铭普光磁(SZSE.002902)股票,采用了贝叶斯优化调整xgboost模型的超参数,得到了最优的模型参数组合:colsample_bytree:0.8308;learning_rate:0.3443;gamma:0.2381;max_depth:4.0。最后测试集得到的精确度:0.53,效果相对一般,但也不错。 根据对测试集的预测结果进行策略买卖回测,增加了买卖交易的手续费---万一免五。一共进行了63次的买入和卖出,最后由初始资金100000元赚取到为179519.77元,共赚取了79519.77元。为了更好评估该模型回测的效果,计出夏普比率为15.6349,最大回撤为30.24% 这一研究对于股票策略的优化和改进具有一定的参考价值。回测结果仅仅是对过去一段时间的模拟,不能保证未来的表现。因此,在实际应用中,需要谨慎对待回测结果,并不断优化和调整策略。

2024-09-25

Pandas-.zip

压缩包里含有丰富的Pandas的资源和代码,它不仅包含了丰富的Pandas知识和代码示例,还附有我亲手绘制的思维导图。虽然我并非计算机专业出身,但我通过自学数据分析,最终在大数据分析师的岗位上找到了自己的位置。这些基础内容是我在学习过程中积累的心得与经验,现在我愿意分享给同样热爱数据分析的朋友们。我深知自学数据分析的道路充满挑战,因此我在学习资料中加入了大量个人注释,希望能够帮助后来者更好地理解和掌握相关知识。随着时间的推移,我会在我的博客上逐步发布更多内容,但对于那些渴望立即开始学习的朋友们,现在就可以下载这个压缩包,提前获取学习材料。我希望这些资源能够对你们有所帮助,让你们在数据分析的道路上少走弯路,更快地达到目标。让我们一起努力,探索数据的奥秘,挖掘数据的价值! 文章里包涵了:对象创建,数据导入,数据提取,数据增删改,数据清洗,重置索引,数据格式化,数据计算,排序和排名,分组聚合,数据移位,数据转化,日期数据,数据导出,数据合并,时间序列等内容~

2024-09-25

Python基础.zip

压缩包里含有丰富的Python基础的资源和代码,思维导图全程是手打上去,本人非计算机专业,自学数据分析,目前工作岗位是大数据分析;这些基础的内容分享给大家,我明白自学数据分析的不易,内涵许多自己在学习过程的注释,后期我会在自己的博客文章里慢慢的发表内容,对于心急学习的伙伴们就可以下载提取学习,希望可以给各位带来帮助! 文章里包涵了:print函数,转义符,保留字,变量三部分,整数类型int( ),浮点类型float( ),布尔类型bool( ),字符串类型str( ),类型转换,算术运算符,赋值运算符,比较运算符,布尔运算符,运算符优先级,选择结构,循环语句,字典,元组,集合,列表,字符串,函数创建,函数返回值,参数总结,变量的作用域,Bug,常见的异常类型,try...except...else...finally结构,面向对象,类的组成,对象实例化,动态绑定,三大特征,模块和包,文件处理,with语句,os模块,os.path模块

2024-09-25

数据分析项目-医药电商销售分析.zip

本文题目来源于2022年数据分析大赛的A题,该文章是本人自己创作而成,从医药电商的店铺、药品和品牌分别进行分析预处理和可视化,最后建立起了时间序列模型进行预测。内容详情可以去本人博客去阅读浏览(免费的哦~)!本压缩包内含比赛题目、比赛数据以及自己创写的代码! 详情内容: 1.进行了数据预处理,包括清洗、整理和转换等步骤,以确保数据的质量和准确性; 2.运用可视化工具将数据呈现出来,以便更好地理解数据之间的关系和趋势; 3.分析店铺、药品和品牌销售各不同的原因分析以及情况,探讨了品牌选择对店铺业绩的影响; 4.利用历史数据对未来的销售情况进行预测。这个模型可以帮助商家做出更准确的决策,提高销售业绩; 5.最后通过对医药电商店铺、药品和品牌的综合分析,我为商家提供了有价值的洞察和建议,帮助他们优化运营策略,提升竞争力。

2024-09-25

数据分析项目-房屋价格预测.zip

通过密切关注时事变化以及大量的资料翻阅,我们致力于查找出那些对房屋销售和价格产生影响的关键指标。一般来说,大部分销售和房价的影响因素都是较为类似的,然而,也存在部分影响指标需要通过深入的数据分析才能得出。 为了准确找出影响房屋销量和总价格的指标,我们对 “house 文件数据” 进行了全面的预处理操作。首先,针对数据中的缺失值,我们采用了合理的填充方法,确保数据的完整性。接着,我们对每个指标进行了数量分布以及与房屋总价格关系的可视化。 基于问题二得出的影响房屋总价格的特征指标,我们选择了网格搜索随机森林(GSRE)算法进行房屋总价格的预测。随机森林算法具有强大的预测能力和鲁棒性,能够有效地处理高维度数据和非线性关系。而网格搜索则可以帮助我们对模型进行参数优化选择,以得出更好的预测效果。 为了方便深入了解分析过程和结果,提供了丰富的资源: 1.源代码(完整的数据分析流程代码,便于复现分析结果); 2.上万的完整论文(深入探讨了数据分析的各个方面,包括指标选择、数据预处理、模型建立与优化等); 3.处理前后的数据(分享了原始数据及经过处理后的数据); 4.参考文献。

2024-09-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除