一、前言
Pandas是Python中一个非常强大的数据处理库,广泛应用于数据分析、数据清洗和数据可视化等领域。它提供了丰富的数据结构和操作方法,使得处理表格数据变得更加简单高效。
本篇思维导图旨在帮助读者快速了解和掌握Pandas的基本概念、常用功能和操作技巧。通过这张思维导图,您将能够更加系统地学习和应用Pandas,提升数据处理的效率和质量。
本文创作不易,请各位大佬们动动你们的宝贵的小手指,点赞+收藏+关注!谢谢!
二、思维导图
Pandas【二】
- 排序和排名
- 排序:sort_values()
- df.sort_values(by , axis , ascending , inplace , kind=’quicksort’ , na_position=’last’ , ignore_index=False)
- by: 要排序的名称列表
- axis:轴,0表示行,1表示列,默认行排序
- ascending:升序或降序排序,布尔值
- inplace:布尔值,默认值为False,如果值为True,则就地排序
- kind:指定排序算法,值为’quicksort’(快速排序)、’mergesort’(混合排序)或’heapsort’(堆排),默认值为quicksort
- na_position:空值(NaN)的位置,值为first空值在数据开头,last空值在最后,默认值为last
- ignore_index:布尔值,是否忽略索引,值为True标记索引(从0开始按顺序的整数值),值为False则忽略索引
- 例:df.sort_values(by='数量',ascending=False)
- 例:df.sort_values(by=['数量','成交金额'],ascending=False)
- 多列进行排序,数量和成交金额,数量相同的情况下,成交金额降序
- df.sort_values(by , axis , ascending , inplace , kind=’quicksort’ , na_position=’last’ , ignore_index=False)
- 排名:rank()
- df.rank(axis , method=’average’ , ascending , na_option=’keep’)
- axis:轴,0表示行,1表示列,默认按行排序
- method:表示在具有相同值的情况下所使用的排序方法
- average:默认值,平均排序
- min:最小值排名
- max:最大值排名
- first:按值在原始数据中的出现的顺序分配排名
- dense:密集排名,类似最小值排名,排名相同的数据只占一个名次
- na_option:空值的排序方式
- keep:保留
- top:如果升序,将最小排名赋给NaN
- bottom;最果升序,将最大排名赋给NaN
- 例:df['排名']=df['数量'].rank(method='min',ascending=False)
- df.rank(axis , method=’average’ , ascending , na_option=’keep’)
- 排序:sort_values()
- 数据计算
- 参数说明
- axis=1表示按行加,axis=0表示按列加,默认列加
- 参数说明