Pandas【二】

一、前言

        Pandas是Python中一个非常强大的数据处理库,广泛应用于数据分析、数据清洗和数据可视化等领域。它提供了丰富的数据结构和操作方法,使得处理表格数据变得更加简单高效。

        本篇思维导图旨在帮助读者快速了解和掌握Pandas的基本概念、常用功能和操作技巧。通过这张思维导图,您将能够更加系统地学习和应用Pandas,提升数据处理的效率和质量。

        本文创作不易,请各位大佬们动动你们的宝贵的小手指,点赞+收藏+关注!谢谢!

二、思维导图

Pandas【二】

  • 排序和排名
    • 排序:sort_values()
      • df.sort_values(by , axis , ascending , inplace , kind=’quicksort’ , na_position=’last’ , ignore_index=False)
        • by: 要排序的名称列表
        • axis:轴,0表示行,1表示列,默认行排序
        • ascending:升序或降序排序,布尔值
        • inplace:布尔值,默认值为False,如果值为True,则就地排序
        • kind:指定排序算法,值为’quicksort’(快速排序)、’mergesort’(混合排序)或’heapsort’(堆排),默认值为quicksort
        • na_position:空值(NaN)的位置,值为first空值在数据开头,last空值在最后,默认值为last
        • ignore_index:布尔值,是否忽略索引,值为True标记索引(从0开始按顺序的整数值),值为False则忽略索引
      • 例:df.sort_values(by='数量',ascending=False)
      • 例:df.sort_values(by=['数量','成交金额'],ascending=False)
        • 多列进行排序,数量和成交金额,数量相同的情况下,成交金额降序
    • 排名:rank()
      • df.rank(axis , method=’average’ , ascending , na_option=’keep’)
        • axis:轴,0表示行,1表示列,默认按行排序
        • method:表示在具有相同值的情况下所使用的排序方法
          • average:默认值,平均排序
          • min:最小值排名
          • max:最大值排名
          • first:按值在原始数据中的出现的顺序分配排名
          • dense:密集排名,类似最小值排名,排名相同的数据只占一个名次
        • na_option:空值的排序方式
          • keep:保留
          • top:如果升序,将最小排名赋给NaN
          • bottom;最果升序,将最大排名赋给NaN
      • 例:df['排名']=df['数量'].rank(method='min',ascending=False)
  • 数据计算
    • 参数说明
      • axis=1表示按行加,axis=0表示按列加,默认列加
    weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值