### 多时点 DID 平行趋势检验实现
#### Python 实现
在 Python 中可以利用 `pandas` 和 `statsmodels` 来完成多时点 DID 的平行趋势检验。以下是具体代码:
```python
import pandas as pd
import numpy as np
from statsmodels.formula.api import ols
# 假设数据结构如下:
data = {
'unit': [1, 1, 1, 2, 2, 2, 3, 3, 3], # 单位编号
'time': [2018, 2019, 2020, 2018, 2019, 2020, 2018, 2019, 2020], # 时间
'treatment': [0, 0, 1, 0, 0, 0, 0, 1, 1], # 是否处理组(1表示处理)
'outcome': [5, 6, 7, 4, 5, 6, 3, 4, 5] # 结果变量
}
df = pd.DataFrame(data)
# 创建时间虚拟变量
for t in df['time'].unique():
df[f'time_{t}'] = (df['time'] == t).astype(int)
# 构建回归模型
formula = 'outcome ~ treatment * time_2018 + treatment * time_2019 + treatment * time_2020'
model = ols(formula, data=df).fit()
print(model.summary())
```
上述代码通过交互项来检测不同时间段内的政策效果变化情况,从而验证平行趋势假设[^1]。
---
#### Stata 实现
Stata 提供了更为直观的方式来进行平行趋势检验。以下是一个完整的例子:
```stata
* 数据准备
clear
input unit time treatment outcome
1 2018 0 5
1 2019 0 6
1 2020 1 7
2 2018 0 4
2 2019 0 5
2 2020 0 6
3 2018 0 3
3 2019 1 4
3 2020 1 5
end
* 创建时间虚拟变量
tabulate time, gen(time_)
gen treat_time_2018 = treatment * time__1
gen treat_time_2019 = treatment * time__2
gen treat_time_2020 = treatment * time__3
* 进行回归分析
regress outcome treatment time__1 time__2 time__3 treat_time_2018 treat_time_2019 treat_time_2020
* 绘制平行趋势图
foreach j of numlist 1/3 {
replace DID = 1 if (unit == `j' & time >= 2019)
}
mkmat time__*, matrix(Times)
coefplot, keep(treat_time_*) vertical recast(connect) yline(0) ///
xline(2, lp(dash)) ytitle("政策效应") xtitle("时期")
```
此部分展示了如何构建交互项并绘制平行趋势图[^2][^3]。
---
#### R 实现
R 可以借助 `fixest` 或者 `plm` 包轻松完成类似的分析过程。下面提供了一个简单示例:
```r
library(fixest)
library(ggplot2)
# 准备数据
data <- data.frame(
unit = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
time = c(2018, 2019, 2020, 2018, 2019, 2020, 2018, 2019, 2020),
treatment = c(0, 0, 1, 0, 0, 0, 0, 1, 1),
outcome = c(5, 6, 7, 4, 5, 6, 3, 4, 5)
)
# 添加时间哑变量
data$time_dummies <- paste0("time_", data$time)
dcast_data <- reshape2::dcast(data, unit + treatment + outcome ~ time_dummies, value.var = "outcome")
# 回归分析
feols(outcome ~ treatment + time_2018 + time_2019 + time_2020 | unit, data = dcast_data)
# 绘制平行趋势图
ggplot(data, aes(x = factor(time), y = outcome, group = interaction(unit, treatment))) +
geom_line(aes(color = factor(treatment)), size = 1) +
labs(title = "Parallel Trend Test", x = "Time Periods", y = "Outcome Variable") +
theme_minimal()
```
这段代码实现了基于固定效应回归和平行趋势可视化的过程。
---
### 总结
以上分别提供了 Python、Stata 和 R 下的多时点 DID 平行趋势检验方法及其对应的代码实现方式。每种工具都有其独特的优势,在实际应用中可以根据个人习惯和技术环境选择合适的解决方案。