蓝桥杯2021年第十二届国赛真题-异或变换

题目描述

小蓝有一个 01 串 s = s1 s2 s3 · · · sn。
以后每个时刻,小蓝要对这个 01 串进行一次变换。每次变换的规则相同。
对于 01 串 s = s1 s2 s3 · · · sn,变换后的 01 串 s′ = s′1 s′2 s′3· · · s′n 为:
s′1 = s1; 
s′i = sii 1 ⊕ si。
其中 a ⊕ b 表示两个二进制的异或,当 a 和 b 相同时结果为 0,当 a 和 b不同时结果为 1。
请问,经过 t 次变换后的 01 串是什么?

输入

输入的第一行包含两个整数 n, t,分别表示 01 串的长度和变换的次数。
第二行包含一个长度为 n 的 01 串。

输出

输出一行包含一个 01 串,为变换后的串。

样例输入复制

5 3
10110

样例输出复制

11010

提示

【样例说明】
初始时为 10110,变换 1 次后变为 11101,变换 2 次后变为 10011,变换 3
次后变为 11010。
【评测用例规模与约定】
对于 40% 的评测用例,1 ≤ n ≤ 100, 1 ≤ t ≤ 1000。
对于 80% 的评测用例,1 ≤ n ≤ 1000, 1 ≤ t ≤ 109。
对于所有评测用例,1 ≤ n ≤ 10000, 1 ≤ t ≤ 1018。

解题思路:看到这个题,我们首先可以想到用模拟,循环t次,每次求一遍序列,但是一看t的数据范围,直接就可以劝退了,但是我们发现n比较小,对于这类题目,我们很容易想到在 将原序列进行变换的过程中,变换到一定次数后会回到原来的状态,也就是说存在一个循环节,而这个循环节根据n来看应该不会太大,所以可以将这个循环节求出来然后让t'=t%循环节长度,最后用这个新的t'去模拟即可,当时做这个题的时候忽略了常数的影响,模拟的时候常数太大然后就超时了,后来看到有博客说循环节的长度是大于n的最小的2的整次幂,那这个题的极限应该可以达到10000*10000的级别,所以常数在此时显得就异常重要,一开始做的时候常数多乘了个2,后来把常数改成一就过了。。。

上代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=1e4+10;
int n;
long long t;
int a[N],b[N],c[N];
bool check()
{
	for(int i=1;i<=n;i++)
	if(a[i]!=c[i])
	return false;
	return true;
}
char str[N];
int main()
{
	cin>>n>>t;
	getchar();
	for(int i=1;i<=n;i++)
	cin>>str[i];
	for(int i=1;i<=n;i++)
	{
		a[i]=str[i]-'0';
		b[i]=a[i];
	}
	if(n==1)
	{
		cout<<a[1]<<endl;
		return 0;
	}
	int cnt=1;
	c[1]=b[1];
	for(int i=2;i<=n;i++)
	c[i]=b[i]^b[i-1];
	for(int i=1;i<=n;i++)
	b[i]=c[i];
	while(1)
	{
		if(check())
		break;
		for(int i=2;i<=n;i++)
		c[i]=b[i]^b[i-1];
		for(int i=1;i<=n;i++)
		b[i]=c[i];
		cnt++;
	}
	t=t%cnt;
	for(int i=1;i<=n;i++)
	b[i]=a[i];
	for(int i=1;i<=t;i++)
	{
//		for(int j=2;j<=n;j++)
//		c[j]=b[j-1]^b[j];
//		for(int j=1;j<=n;j++)
//		b[j]=c[j];//超时代码 
        for(int j=n;j>=2;j--)
        a[j]^=a[j-1];
	}
	for(int i=1;i<=n;i++)
	cout<<a[i];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值