论文名称:Space-time-coding digital metasurfaces
期刊名称:Nature Communication
发表年份:2018年
摘要
最近提出的数字编码超表面使得实时控制电磁 (EM) 波成为可能,并允许以可编程的方式实现许多不同的功能。然而,当前的配置只是空间编码的,并且不利用时间维度。在这里,我们提出了时空调制数字编码超表面的一般理论,以获得电磁波在空间域和频域的同时操作,即同时控制传播方向和谐波功率分布。作为原理证明应用示例,我们考虑谐波波束转向、波束整形和散射签名控制。为了验证,我们实现了一个由现场可编程门阵列控制的原型,它通过优化的时空编码序列实现了谐波波束转向。数值和实验结果表明,该方法具有良好的性能,在无线通信、认知雷达、自适应波束形成、全息成像等领域具有潜在的应用价值。
前言
在过去的几十年里,电磁 (EM) 超材料由于其独特的、精细的可定制的性质而经历了指数级的发展,这些属性本质上不一定可用。超材料是人工设计的结构,已被广泛用于以非常规方式操纵电磁波,从而产生许多令人兴奋的现象和新颖的设备 1。超表面作为超材料的二维(2D)等价性,由于其提供电磁波2-4的突变相移、幅度调制(AM)和极化转换的能力,越来越受到科学和工程界研究人员的兴趣。与三维(3D)块状超材料相比,超表面的电学厚度可以忽略不计,从而提供了更好的可积性和较低的插入损耗。2011 年,Yu 等人。通过设计能够抑制突然相移的超表面,提出了广义 Snell 的反射和折射定律 2 的想法,从而产生可用于控制的相位不连续(例如,转向和聚焦)光波前。从那时起,超表面经历了快速节奏的发展,导致了许多有趣的设备,能够操纵微波、太赫兹波和可见光5-10。然而,由广义斯涅尔定律控制的超表面在界面上只表现出空间梯度相位不连续,并且本质上受到洛伦兹互易性和时间反转对称性的限制。2015年,Had等人通过将时间调制应用于表面阻抗的电子特性,提出了时空梯度超表面11,12的概念,从而实现了电磁波的时空调制,打破了时间反转对称性。同年,Shaltout 等人。通过引入时间梯度相位不连续性 13 提出了时变超表面,它可以打破洛伦兹互易性,并在控制电磁波方面带来新的自由度。读者也称为参考文献。14-17 用于最近的时空调制超表面应用和建模示例。值得注意的是,上述研究中的大多数都涉及理论和数值研究,而实验实现仍然有限。
另一方面,数字编码和可编程超表面发展迅速,因为它们最初是在 2014 年 18-33 年提出的。这些结构最初是为了数字控制电磁波而提出的,通过设计两个不同的编码元素,其反射相位相反(如0°和180°)作为数字位“0”和“1”(二进制情况)18。这个概念可以从二进制 (1 位) 扩展到多位配置。例如,2位编码超表面由一系列四个编码元素“00”、“01”、“10”和“11”构成,分别表现出0°、90°、180°和270°相位响应。数字编码超表面可以极大地简化设计和优化过程,因为反射(或传输)系数的相位在单元单元和系统设计中进行数字离散化,从而大大减少了参数搜索空间。通过将编码元素排列在具有预先设计的编码序列的 2D 平面上,这种超表面可用于以简单有效的方式操纵电磁波。值得注意的是,编码超表面的应用范围不仅限于微波频率,而且还扩展到太赫兹波段 19-22,31 以及声学场景 23。
值得注意的是,数字编码超表面在物理世界和数字世界之间架起一座桥梁,使得从信息科学的角度重新审视超材料成为可能29-31。最重要的是,编码超表面的数字描述自然适合于与有源元件的集成,如正本征负(PIN)二极管、变容二极管和微机电系统(MEMS)。因此,数字编码超表面的所有编码元素都可以由现场可编程门阵列 (FPGA) 独立控制。通过改变存储在FPGA中的编码序列,可以实时切换许多不同的功能,从而导致可编程超表面。数字编码和可编程超表面已成功用于产生涡旋光束 32,33, 可编程全息图 26 、反射/发射阵列 20-22、24、25、漫反射散射 19,27,28 等。
然而,在上述数字可编程架构中,迄今为止只考虑空间编码,而尚未利用时间维度。换句话说,编码序列通常在时间上是固定的,并且控制系统只需在需要时切换功能即可更改。如前所述,超表面的时间调制已在参考文献中提出。11-13 ,但这些理论方法都是基于模拟调制,这在实践中很难实现。作为另一种可行的途径,我们引入了时空编码的概念来扩展基于超表面的波操作的复杂性。
因此,在本文中,我们考虑了基于反射系数时间调制的时空编码数字超表面。具体来说,一组编码序列在预先设计的时间段内循环切换,导致频域所需的谐波散射功率分布。在某种程度上,我们的方法将数字编码超表面的概念与“相位开关屏幕”34和“时间调制阵列”35的概念相结合。首先,我们概述了基于傅里叶变换方法的时变编码超表面的基本理论。随后,我们展示了几个说明性示例来证明我们的方法在操纵光谱功率方面的潜力。第一个示例通过利用二进制粒子群优化 (BPSO) 算法来设计时空编码序列来解决实现谐波波束转向。第二个和第三个示例集中在中心频率处的波束转向和整形,其余示例旨在通过适当重新分配频谱的功率来减少散射。最后,对负载PIN二极管的8 × 8时空编码和可编程超表面进行了实验测试。所提出的方法有望显着扩大数字编码超表面的应用,并有望在无线通信36,37和雷达系统38等场景中取得重要优势。
实验结果
理论
我们考虑时空编码数字超表面,其中包含加载PIN二极管的M × N元素的2D阵列,如图1所示。通过对PIN二极管施加控制电压,可以通过离散相位或振幅状态动态控制元件的反射系数。对于1位情况,可以根据图1右下角的数字“0/1”时空编码矩阵周期性地切换每个编码元素的反射相位或幅度,其中红点和绿点分别表示“1”和“0”数字。时空编码策略能够在空间传播和谐波功率分布中同时控制电磁波。
通过假设时间调制速度远小于电磁波频率,基于物理光学类型近似,我们可以绝热扩展最初为空间编码超表面引入的近似建模 18。因此,在抑制时谐依赖性
e
j
2
π
f
c
t
c
e^{j2πf_ct_c}
ej2πfctc 的平面波的正常入射下,时空编码散射的时域远场远场远场模式数字超表面可以表示为:
f
(
θ
,
φ
,
t
)
=
∑
q
=
1
N
∑
p
=
1
M
E
p
q
(
θ
,
ϕ
)
Γ
p
q
(
t
)
e
j
2
π
λ
c
[
(
p
−
1
)
d
x
s
i
n
θ
c
o
s
ϕ
+
(
q
−
1
)
d
y
s
i
n
θ
s
i
n
ϕ
]
(1)
f(\theta ,\varphi ,t)=\sum_{q=1}^{N}\sum_{p=1}^{M} E_{pq}(\theta ,\phi )\Gamma _{pq}(t)e^{j\frac{2\pi }{\lambda _c}[(p-1)d_xsin\theta cos\phi +(q-1)d_ysin\theta sin\phi ] } \tag1
f(θ,φ,t)=q=1∑Np=1∑MEpq(θ,ϕ)Γpq(t)ejλc2π[(p−1)dxsinθcosϕ+(q−1)dysinθsinϕ](1)其中Epq(θ,φ)是在中心频率fc上计算的第(p,q)个编码元素相关的远场模式,θ和φ分别是仰角和方位角,dx和dy分别是沿x和y方向的元素周期,λc是中心操作波长。根据时间切换阵列理论34,35,Γpq(t)为第(p, q)个元素的时间调制反射系数,假设为时间的周期性函数,在一个周期内定义为移位脉冲函数的线性组合:
Γ
p
q
(
t
)
=
∑
n
=
1
L
Γ
p
q
n
U
p
q
n
(
t
)
(
0
<
t
<
T
0
)
(2)
\Gamma_{pq}(t)=\sum_{n=1}^{L}\Gamma_{pq}^nU_{pq}^n(t) \quad (0<t<T_0) \tag2
Γpq(t)=n=1∑LΓpqnUpqn(t)(0<t<T0)(2)其中
U
p
q
n
(
t
)
U_{pq}^n(t)
Upqn(t)是一个调制周期 T0 的周期性脉冲函数。在每个时期,我们有
U
p
q
n
(
t
)
=
{
1
,
(
n
−
1
)
τ
≤
t
≤
n
τ
0
,
o
t
h
e
r
w
i
s
e
(3)
U_{pq}^n(t)= \begin{cases} \text{ 1 },&(n-1)\tau \le t \le n\tau \\ \text{ 0 } ,&otherwise \end{cases} \tag3
Upqn(t)={ 1 , 0 ,(n−1)τ≤t≤nτotherwise(3) 其中
τ
=
T
0
L
τ =\frac{T_0}{L}
τ=LT0为
U
p
q
n
(
t
)
U_{pq}^n(t)
Upqn(t)的脉冲宽度,L为表示时间编码序列长度的正整数,
Γ
p
q
n
=
A
p
q
n
e
j
φ
p
q
n
Γ_{pq}^{n}=A_{pq}^{n}e^{j\varphi_{pq}^{n}}
Γpqn=Apqnejφpqn为中心频率区间
(
n
−
1
)
τ
≤
t
≤
n
τ
(n−1)τ≤t≤nτ
(n−1)τ≤t≤nτ期间第(p, q)个编码元素的反射系数,
A
p
q
n
A_{pq}^{n}
Apqn和
φ
p
q
n
\varphi_{pq}^{n}
φpqn分别表示振幅和相位。
接下来,我们将
U
p
q
n
(
t
)
U_{pq}^n(t)
Upqn(t)分解为傅里叶级数
U
p
q
n
(
t
)
=
∑
m
=
∞
∞
c
p
q
m
n
e
j
2
π
m
f
0
t
(4)
U_{pq}^n(t)=\sum_{m=\infty}^{\infty}c_{pq}^{mn}e^{j2\pi mf_0t} \tag4
Upqn(t)=m=∞∑∞cpqmnej2πmf0t(4) 其中
f
0
=
1
/
T
0
f0 = 1/T0
f0=1/T0,傅里叶系数
c
p
q
m
n
c_{pq}^{mn}
cpqmn有
c
p
q
m
n
=
1
T
0
∫
0
T
0
U
p
q
n
(
t
)
e
−
j
2
π
m
f
0
t
d
t
(5)
c_{pq}^{mn}=\frac{1}{T_0}\int_{0}^{T_0}U_{pq}^n(t)e^{-j2\pi mf_0t}dt \tag5
cpqmn=T01∫0T0Upqn(t)e−j2πmf0tdt(5) 因此,周期函数Γpq tð Þ的傅里叶级数系数ampq可以表示为(详细推导见补充注释1)。
a
p
q
m
=
Γ
p
q
n
c
p
q
m
n
=
∑
n
=
1
L
Γ
p
q
n
T
0
∫
(
n
−
1
)
τ
n
τ
e
−
j
2
π
m
f
0
t
d
t
=
∑
n
=
1
L
Γ
p
q
n
T
0
s
i
n
c
(
π
m
L
)
e
−
j
π
m
(
2
n
−
1
L
(6)
a_{pq}^{m}=\Gamma_{pq}^nc_{pq}^{mn}=\sum_{n=1}^{L}\frac{\Gamma_{pq}^n}{T_0}\int_{(n-1)\tau}^{n\tau}e^{-j2\pi mf_0t}dt \\ =\sum_{n=1}^{L}\frac{\Gamma_{pq}^n}{T_0}sinc\left (\frac{\pi m}{L} \right )e^{\frac{-j\pi m(2n-1}{L}} \tag6
apqm=Γpqncpqmn=n=1∑LT0Γpqn∫(n−1)τnτe−j2πmf0tdt=n=1∑LT0Γpqnsinc(Lπm)eL−jπm(2n−1(6)最后,第m次谐波频率fc + mf0处时空编码数字超表面的远场散射模式写为
F
m
(
θ
,
ϕ
)
=
∑
q
=
1
N
∑
p
=
1
M
E
p
q
(
θ
,
ϕ
)
e
j
2
π
λ
c
[
(
p
−
1
)
d
x
s
i
n
θ
c
o
s
ϕ
+
(
q
−
1
)
d
y
s
i
n
θ
s
i
n
ϕ
]
a
p
q
m
(7)
F_m(\theta,\phi)=\sum_{q=1}^{N}\sum_{p=1}^{M} E_{pq}(\theta ,\phi )e^{j\frac{2\pi }{\lambda _c}[(p-1)d_xsin\theta cos\phi +(q-1)d_ysin\theta sin\phi ] }a_{pq}^{m} \tag7
Fm(θ,ϕ)=q=1∑Np=1∑MEpq(θ,ϕ)ejλc2π[(p−1)dxsinθcosϕ+(q−1)dysinθsinϕ]apqm(7) 在近似建模中,忽略了编码元素之间的相互耦合。因此,对于任意3D时空编码序列(详见补充注释2),我们可以通过Eq.(7)计算任意谐波频率下编码超表面的散射模式。在整篇论文中,为简单起见,我们假设各向同性编码元素(Epq = 1)。通过控制单个元素的时间编码序列,合成了一组复杂的反射系数am pq来控制它们的散射特性。更具体地说,通过Eq.(6),我们可以合成所有元素在特定谐波频率下的等效振幅和相位激励,如补充图1所示。
在这项研究中,我们假设每个元素的反射幅度 A n pq 是均匀的,而相位 φn pq 是时间的周期性函数,其值为 0° 或 180°,根据编码序列中的数字“0”和“1”。此后,我们将此方案称为“相位调制”(PM)。时空编码数字超表面中的编码序列可以是任意的,由维度为 (M, N, L) 的 3D 矩阵表示。例如,补充图 1a 显示了维度为 (8, 8) 的随机 3D 时空编码矩阵,表示由 8 × 8 元素组成的编码超表面,具有 8 间隔的周期性时间调制(另见补充图 1f)。根据补充图 1a 所示的 3D 矩阵定期切换所有编码元素。每个元素都有自己的独立时间编码序列,这导致不同谐波频率的等效振幅和相位。例如,参考+2次谐波频率,等效振幅和相位分布分别见补充图1b, c。uv 平面 (u = sin θ cosφ, v = sin θ sin φ) 中相应的 3D 和 2D 散射模式分别显示在图 1d, e 中。读者可参考补充图 2 和 3 以获得额外的结果。
作为所提出方法的关键方面,我们强调,尽管物理编码元素仅表现出二元反射相位(0° 或 180°),但等效激发 [通过等式。 (6)] 可以通过适当地设计时间编码序列来获得几乎 360° 的相位覆盖,如补充图 1c 所示。这样,周期性时间切换的单个 1 位(或 2 位)可编程超表面可用于有效地合成多位可编程超表面(参见补充注释 3),这可以打开大量有趣的应用。
谐波波束转向
在上述理论分析的帮助下,我们可以成功地在任何谐波频率下实现散射模式的精确控制。作为第一个说明性示例,我们解决了一个平面上谐波波束转向的时空编码矩阵的设计。以往研究39,40,4中考虑的传统时间切换阵列可以通过使用时间梯度序列来实现谐波波束转向,如图2a, b所示。然而,这些方法基于 AM,其中阵列的一个元素在给定时间分散,从而导致显着的增益减少。相反,如果我们使用相同的时间序列,但相反考虑所提出的 PM 方案,可以显着提高散射功率。AM和PM下编码元素的等效振幅和相位分别如图2c、d所示。我们清楚地观察到,与 AM 相关的等效幅度几乎是恒定的,并且明显小于 PM 的幅度,这证实了我们上面的直觉。此外,还可以观察到一些等效的相位梯度出现在正谐波和负谐波频率(见白色箭头),这有助于引导谐波光束。通过在傅里叶变换中引入时间偏移,可以更好地理解谐波波束转向。图2b中第1至第8个元素的时间编码序列可以被认为是具有时间移位tq的周期性函数Γpq(t),当ce Γpqðt 푡 tqÞ !FS a m pq exp ’ j2πmf0tq푡。因此,时间偏移带来了在第m次谐波频率处振幅不变的附加空间相移푡2πmf0tq,这清楚地解释了图2c, d中的相位梯度(更多细节见补充注释4)。图 2e 显示了与不同谐波频率下 AM 相关的归一化散射模式,而图 2f 显示了 PM 散射模式(相对于图 2e 中的归一化)。与 PM 相关的散射峰分别比 fc、fc ± f0、fc ± 2f0 和 fc ± 3f0 处的 AM 峰高 15.56、5.78、5.11 和 3.90 dB。然而,PM 案例中的功率水平明显不平衡,因为中心频率的功率远大于其他谐波频率的功率。
为了更好地均衡功率水平,我们利用BPSO算法来优化每个编码元素的时间编码序列(更多细节见补充注释5)。因此,我们获得了优化的 2D 时空编码矩阵,如图 3a 所示。该编码矩阵的等效振幅和相位分别见补充图5a和5b(详见补充说明6)。相应的谐波散射模式如图3b所示,从中我们观察到不同谐波频率下的功率水平现在是均匀的,比AM相关的功率水平高约7.6 dB(cf.图 2e)。2D 和 3D 散射模式分别如图 3c、d 所示。可以观察到,不同谐波频率下的主波束指向不同的方向,从而实现所需的谐波波束转向。
值得指出的是,谐波散射模式也可以通过逆快速傅里叶变换 (IFFT) 技术 31 来计算,这可以极大地降低优化的计算复杂度,特别是对于电大超表面。
中心频率处的波束转向和整形
在上述设计的1位时空编码超表面中,只有谐波频率的光束被引导到其他方向,而中心频率处的光束总是指向宽边。这种限制本质上源于中心频率的等效相位(见图 2c、d 和补充图 4a)。正如预期的那样,我们可以使用具有 2 位相位响应的物理编码元素来获得中心频率处的 3 位等效空间编码。时空编码策略提供了一种设计多位可编程超表面的新方法(即使具有任意相位),它不需要复杂的布局和控制系统,并且能够更精确地控制空间域和频域中的电磁波。
更具体地说,我们考虑一个长度为 8 的 8 × 8 元素的编码超表面和长度为 8 的时序编码超表面。首先,我们在中心频率的一个平面上解决波束转向设计。因此,我们只需要研究八个元素的时间编码序列,元素的每一列都具有相同的数字代码。图 4a、b 显示了 2 位时空编码矩阵,其中红色、黄色、绿色和蓝色点分别代表“0”、“1”、“2”和“3”数字,分别代表 0°、90°、180° 和 270° 相位响应(选择这八组时间编码序列的标准详见补充说明 7)。这八个编码元素在不同谐波频率下的等效振幅和相位分别如图4c、d所示。我们可以清楚地看到,所设计的时空编码矩阵有效地产生了等效的3位响应,“0 '”(-135°),“1 '”(-90°),“2 '”(−45°),“3 '”(0°),“4 '”(45°),“5 '”(90°),“6 '”(135°),“7 '”(180°),中心频率的等效相位梯度。根据广义斯涅尔定律2,这种相位不连续将以1.5°的角度引导正常入射波。图 4e、f 显示了中心频率处的相应 2D 散射模式和不同谐波频率下的散射模式。可以看出,在 θ = -14.5° 处中心频率点的主光束 a 谐波频率下的散射功率要小得多,提供了良好的边带抑制。此外,我们将原始 2 位编码“0-0-0-0-1-2-2-3-3”的波束转向性能与等效的 3 位编码“0′-1′-2′-3′-4′-5′-6′-7′”进行了比较,如图 4g 所示。我们观察到,前一种方案可以实现14.5°的转向角,但伴随着高旁瓣,而后者方案获得了旁瓣低得多的转向,仅由于边带功率损耗而降低了一点增益。大角度波束转向的等效3位编码的类似示例见补充图6c和6d。
作为进一步的说明性示例,我们利用图 4b 中的八组时间编码序列来生成中心频率处携带轨道角动量 (OAM) 的涡旋光束。编码超表面在空间上被划分为八个扇区,其旋转分布时间编码序列,每个扇区具有相同的时间编码序列。最终的时空编码配置显示在补充图7a中,而中心频率对应的等效振幅和相位分别如图4h, i所示。图 4i 中的等效 3 位空间编码表现出螺旋状相位轮廓,可以生成 OAM 模式 l = 12,32 的涡旋光束。中心频率处对应的 2D 和 3D 散射模式如图 4j, k 所示。与所需涡旋光束的特性一致,可以清楚地观察到具有空心中心的典型强度分布。
值得注意的是,上述示例处理高性能天线和无线通信系统实际感兴趣的辐射场景,无法通过参考文献中的更简单的策略(相位切换屏幕或时间调制阵列)轻松解决。
雷达截面减小的散射控制
在雷达和隐身技术中,减少目标的散射,减少其雷达截面(RCS)是一个关键问题。传统的雷达吸收材料可以吸收入射电磁功率,而基于相位消除原理的低散射超表面可以将入射波重定向到其他方向18,19,27,28,41。参考文献中提出的相位切换屏幕。34 利用时间编码(通过简单的时间切换序列“01”)将散射功率重新分配到奇数次谐波。在此背景下,我们提出的时空编码数字超表面可以在空间域和频域重新分配散射功率,从而产生与传统策略完全不同的RCS降低机制。
例如,图 5a 说明了具有均匀反射相位分布的超表面,这本质上表现为金属板。通过假设正常入射平面波照明,从图 5f 所示的归一化 2D 散射模式中,我们观察到散射功率在宽边达到峰值。通过将均匀相位分布更改为棋盘状图案,如图 5b18、41 所示,后向散射功率大大降低,但在另一个方向仍然存在强散射峰,如图 5g 所示。我们现在应用于棋盘状图案,这是一个空间编码矩阵,在调制周期内随时间序列“10”而变化,如图 5c 所示。在这种情况下,入射功率在空间域和频域都被重新分配。与中心频率和前五个正谐波频率有关的散射模式如图5h所示。请注意,此时间编码仅导致产生奇数次谐波,如补充图 8a 所示。我们清楚地观察到光束形状与图 5g 中的形状相同,但反向散射功率仅扩散到奇数边带。图5c中时空编码矩阵调制的这种主动编码超表面可以在中心频率处产生零后向散射功率。此外,与图5f相比,不同谐波频率下后向散射功率的最大值也降低了~9.55 dB,与图5g中棋盘状空间编码相比,最大后向散射功率降低了~3.92 dB。
如果我们现在考虑图 5d 所示的 BPSO 优化空间编码,则反向散射功率将分布在所有可能的方向上均匀18,19,28,如图5i所示。这种优化的空间编码导致散射模式更加均匀,与棋盘状空间编码相比,后向散射功率最大值降低了7.07 dB。在此基础上,我们将随机时间编码序列“10011010”应用于优化的空间编码,如图5e所示。在这种情况下,入射功率在空间域和频域中更均匀地重新分配。与前五个正谐波频率有关的散射模式如图5j所示。光束形状与图 5i 中的形状相同,但后向散射功率现在在整个上空间中显着降低,并扩散到几乎所有边带(参见补充图 8b)。这种时空编码矩阵也可以在中心频率处产生零后向散射功率。此外,与图5f相比,不同谐波频率下后向散射能量的最大值降低了~21.52 dB,与图5i相比降低了~8.82 dB。通常,通过在空间编码超表面上引入适当的时间调制,可以在空间域和频域中完美地抑制后向散射功率,这确保了有效和鲁棒的RCS降低。
实验验证
为了验证上述概念和设计,我们实现了一个由 8 × 8 个元素组成的编码超表面,这些元素与谐波波束转向示例有关(见图 3)。如图6a所示,每一列(由8个编码元素组成)通过宽度为0.2 mm的偏置线连接,共享一个共同的控制电压。每个编码元件由一个矩形金属贴片组成,印刷在接地F4B衬底上,介电常数为2.65,损耗切线为0.001,厚度为2 mm。采用PIN-二极管(M/ACOM MADCP-000907-14020x)通过金属存根和通孔42将贴片与地面连接起来,如图6b所示。编码元素的大小为15 mm × 15 mm,对应中心频率为10 GHz的半波长。当PIN二极管在“ON”和“OFF”状态之间切换时,确定存根和补丁的尺寸以获得180°的反射相位变化(更多细节见补充图9)。由于二极管为“ON”(或“OFF”),偏置电压为 1.33 V(或 0 V),相应的编码状态为“1”(或“0”)。PIN二极管等效电路模型如图6c所示,R = 7.8 Ω, C = 28 pF, L = 30 pH,全波分析在10 GHz左右。全波仿真结果是通过使用商业软件包CST Microwave Studio 2014 (https://www.cst.com/products/cstmws)获得。在编码元素的模拟中,周期性边界应用于 x 和 y 方向,沿 ±z 方向使用两个 Floquet 端口。假设线性偏振平面波照明(具有 x 方向的电场)来计算与编码元素相关的反射系数。PIN二极管的“ON”和“OFF”态有关的反射系数的相位和振幅分别如图6f、g所示。我们观察到相位差在10 GHz左右为180°,对应的振幅接近单位(0.95以上)。
基于这种设计,我们制作了所提出的编码超表面的原型,如图6e所示。该结构由八个连接元素的八个列组成,总体大小为 120 mm × 120 mm (4λc × 4λc )。实验在标准微波消声室中进行,测量设置如图6d所示。从8 GHz到12 GHz工作的线偏振喇叭天线作为激励源,连接到微波信号发生器(Keysight E8267D),该发生器以固定频率提供激励信号。时空编码数字超表面和馈电天线都安装在转盘上,可以在水平平面上自动旋转360°。另一个喇叭天线用于通过频谱分析仪(Keysight E4447A)接收谐波散射信号。利用FPGA硬件控制板(ALTERA Cyclone IV)为编码超表面提供动态偏置电压,其中每一列共享一个控制电压。采用的FPGA是一个时钟速度为50 MHz的低成本系统,其中预先加载代码,根据图3a中的时间编码序列生成8个控制电压。时间编码序列的调制周期T0为2 μs,脉冲宽度τ为0.2μs,分别对应系统调制频率f0 =0.5 MHz,二极管开关速度为5 MHz。值得注意的是,相对较快的开关速度归因于图6a中每一列PIN二极管的并行设计。
图6h, i分别显示了假设中心频率分别为9.8 GHz和10.0 GHz时,前三个正谐波和负谐波相关的测量的2D散射模式。由于照明喇叭天线的堵塞效应,未显示中心频率处的散射模式。散射模式根据铜板测得的散射峰值功率进行归一化,其大小与超表面相同。我们清楚地观察到,作为时空编码超表面的影响,获得了谐波波束转向。谐波梁的转向角与理论预测非常吻合(更多细节见补充表 1),从而验证了所提出方法的有效性。我们还观察到10.0 GHz中心频率的结果比9.8 GHz时的结果略差,这可能是由于制造公差造成的180°相位差条件的变化以及建模中的各种近似和参数不确定性。然而,10.0 GHz的测量结果仍然表现出谐波波束转向的一般特征,如图6i所示。所提出的时空编码超表面原则上可以作为宽带系统运行,前提是编码元件的设计同样是宽带的,这对于多输入多输出 (MIMO) 无线通信很有前景。例如,在不同的方向上,不同谐波频率的散射功率谱是不同的,可以精确控制。因此,我们能够设想在多点通信的频谱中编码信息的可能性,这可以在MIMO场景中找到有趣的应用。
讨论
总之,我们提出了一种基于时间调制来设计时空编码数字超表面的策略,其中每个编码元素都有一组在调制周期内循环切换的时间编码序列。与空间调制一起,所提出的数字编码时间调制可以控制散射电磁功率的空间(传播方向)和光谱(频率分布)特征。作为原理证明,通过基于 BPSO 的时间编码序列设计,我们展示了不同谐波频率下的光束扫描模式。制作了一个 FPGA 控制的原型并进行了实验特征来验证所提出的方法,表明与理论预测非常吻合。我们还通过对 3D 时空编码矩阵的适当设计,提出了其他有趣的应用场景来光束整形和降低散射功率。
与“相位切换屏幕”34相比,由于超表面启用的波操作能力和适当的时间调制之间的明智组合,我们的方法更加通用和灵活。这使得对均匀/奇数谐波和中心频率的散射和辐射进行更精确和有效的控制。
一般来说,我们提出的时空编码数字超表面理论和设计极大地扩展了数字超材料的应用范围,并可能在无线通信、认知雷达、MIMO系统、OAM波束生成、自适应波束形成和全息成像方面找到重要的应用。所提出的概念可以扩展到太赫兹和光学范围,以及声波,并且可以通过适当调制传输系数的相位或幅度来进一步推广到控制透射波。计划未来的研究还包括探索时空编码来设计非互易效应。
代码获取
当前研究中使用的自定义计算机代码可根据合理要求从相应的作者那里获得。
数据获取
当前研究期间和/或分析的数据集可根据合理要求从相应的作者那里获得。