基于标准正态分布与学生氏分布T的区间估计

 常用于区间概率估算,从样本数据分析得出具体参数的大概率区间,简称置信区间,置信水平常取1-α,区间分为置信上限与下限。

对于总体X,我们需要先分析所求参数利用哪种分布可以求区间,常见两类参数即\mu\sigma ^{2},这里只针对\mu进行求估计

当问题中除\mu以外其他参数已知(\sigma ^{2}、样本平均值、样本抽样次数),则使用标准正态分布X~ N(0,1),则X满足:样本平均值-\mu/(\sigma/\sqrt{n})~N(0,1),标准正态分布上的α分位点如图

已知Z为正态曲线,我们要找的就是符合中间大概率1-α区域的\mu的置信区间,则P{|样本平均值-\mu/(\sigma/\sqrt{n})|<Z分位点}=1-α,化去绝对值,移项后,只剩\mu可以得到\mu的一个置信水平为1-α的置信区间(\bar{X}-(\sigma/\sqrt{n})*Z分位点,\bar{X}+(\sigma/\sqrt{n})*Z分位点),所有值都已知,就可以求出对于区间值,例如需要对该事件有95%的概率能够保证,则1-α=0.95,根据样本值带入后就可以获取到在某个置信区间内,我有95%的信心能够保证。

不同于标准正态分布,对于总体X,当我们不仅不清楚\mu的值,也不清楚\sigma ^{2}的值,这时我们就需要用到学生氏分布,学生氏分布和标准正态分布十分相似,它们的曲线图像都是单峰对称曲线,这意味着分位点也是跟上图一致,

而他们的不同在于t分布不依赖任何未知参数,他可以仅通过样本数据得到\mu的置信区间,对于总体 X满足样本平均值-\mu\mu/(S/\sqrt{n})~t(n-1),其中S为样本均方差,解决思路与前面的标准正态分布相差无几,在分位点图上,分位点所求是基于该点位右上方的所有概率累加,总概率为1,所求置信水平为1-α,则剩下α用于均分左右两侧,对于t分布,第一象限分位点为t{_{\alpha /2}}^{(n-1)},第二象限分位点为-t{_{\alpha /2}}^{(n-1)},求解过程一样,列P不等式=1-α,化绝对值,移项,代入值得到最终的置信区间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅色伊蕾娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值